Welcome to Bottlerocket!
Bottlerocket is a free and open-source Linux-based operating system meant for hosting containers.
To learn more about Bottlerocket, visit the official Bottlerocket website and documentation. Otherwise, if you’re ready to jump right in, read one of our setup guides for running Bottlerocket in Amazon EKS, Amazon ECS, or VMware. If you're interested in running Bottlerocket on bare metal servers, please refer to the provisioning guide to get started.
Bottlerocket focuses on security and maintainability, providing a reliable, consistent, and safe platform for container-based workloads. This is a reflection of what we've learned building operating systems and services at Amazon. You can read more about what drives us in our charter.
The base operating system has just what you need to run containers reliably, and is built with standard open-source components. Bottlerocket-specific additions focus on reliable updates and on the API. Instead of making configuration changes manually, you can change settings with an API call, and these changes are automatically migrated through updates.
Some notable features include:
There are many ways to take part in the Bottlerocket community:
Join us on Meetup to hear about the latest Bottlerocket (virtual/in-person) events and community meetings. Community meetings are typically every other week.
Details can be found under the Events section on Meetup, and you will receive email notifications if you become a member of the Meetup group. (It's free to join!)
Start or join a discussion if you have questions about Bottlerocket.
If you're interested in contributing, thank you! Please see our contributor's guide.
If you find a security issue, please contact our security team rather than opening an issue.
We use GitHub issues to track other bug reports and feature requests. You can look at existing issues to see whether your concern is already known.
If not, you can select from a few templates and get some guidance on the type of information that would be most helpful. Contact us with a new issue here.
We don't have other communication channels set up quite yet, but don't worry about making an issue or a discussion thread! You can let us know about things that seem difficult, or even ways you might like to help.
To start, we're focusing on the use of Bottlerocket as a host OS in AWS EKS Kubernetes clusters and Amazon ECS clusters. We’re excited to get early feedback and to continue working on more use cases!
Bottlerocket is architected such that different cloud environments and container orchestrators can be supported in the future.
A build of Bottlerocket that supports different features or integration characteristics is known as a 'variant'.
The artifacts of a build will include the architecture and variant name.
For example, an x86_64
build of the aws-k8s-1.24
variant will produce an image named bottlerocket-aws-k8s-1.24-x86_64-<version>-<commit>.img
.
The following variants support EKS, as described above:
aws-k8s-1.23
aws-k8s-1.24
aws-k8s-1.25
aws-k8s-1.26
aws-k8s-1.27
aws-k8s-1.28
aws-k8s-1.29
aws-k8s-1.30
aws-k8s-1.23-nvidia
aws-k8s-1.24-nvidia
aws-k8s-1.25-nvidia
aws-k8s-1.26-nvidia
aws-k8s-1.27-nvidia
aws-k8s-1.28-nvidia
aws-k8s-1.29-nvidia
aws-k8s-1.30-nvidia
The following variants support ECS:
aws-ecs-1
aws-ecs-1-nvidia
aws-ecs-2
aws-ecs-2-nvidia
We also have variants that are designed to be Kubernetes worker nodes in VMware:
vmware-k8s-1.28
vmware-k8s-1.29
vmware-k8s-1.30
The following variants are designed to be Kubernetes worker nodes on bare metal:
metal-k8s-1.28
metal-k8s-1.29
The following variants are no longer supported:
We recommend users replace nodes running these variants with the latest variant compatible with their cluster.
Our supported architectures include x86_64
and aarch64
(written as arm64
in some contexts).
:walking: :running:
Bottlerocket is best used with a container orchestrator. To get started with Kubernetes in Amazon EKS, please see QUICKSTART-EKS. To get started with Kubernetes in VMware, please see QUICKSTART-VMWARE. To get started with Amazon ECS, please see QUICKSTART-ECS. These guides describe:
To see how to provision Bottlerocket on bare metal, see PROVISIONING-METAL.
To build your own Bottlerocket images, please see BUILDING. It describes:
To publish your built Bottlerocket images, please see PUBLISHING. It describes:
To improve security, there's no SSH server in a Bottlerocket image, and not even a shell.
Don't panic!
There are a couple out-of-band access methods you can use to explore Bottlerocket like you would a typical Linux system. Either option will give you a shell within Bottlerocket. From there, you can change settings, manually update Bottlerocket, debug problems, and generally explore.
Note: These methods require that your instance has permission to access the ECR repository where these containers live; the appropriate policy to add to your instance's IAM role is AmazonEC2ContainerRegistryReadOnly
.
Bottlerocket has a "control" container, enabled by default, that runs outside of the orchestrator in a separate instance of containerd. This container runs the AWS SSM agent that lets you run commands, or start shell sessions, on Bottlerocket instances in EC2. (You can easily replace this control container with your own just by changing the URI; see Settings.)
In AWS, you need to give your instance the SSM role for this to work; see the setup guide. Outside of AWS, you can use AWS Systems Manager for hybrid environments. There's more detail about hybrid environments in the control container documentation.
Once the instance is started, you can start a session:
If you prefer a command-line tool, you can start a session with a recent AWS CLI and the session-manager-plugin. Then you'd be able to start a session using only your instance ID, like this:
aws ssm start-session --target INSTANCE_ID --region REGION_CODE
With the default control container, you can make API calls to configure and manage your Bottlerocket host. To do even more, read the next section about the admin container. You can access the admin container from the control container like this:
enter-admin-container
Bottlerocket has an administrative container, disabled by default, that runs outside of the orchestrator in a separate instance of containerd.
This container has an SSH server that lets you log in as ec2-user
using your EC2-registered SSH key.
Outside of AWS, you can pass in your own SSH keys.
(You can easily replace this admin container with your own just by changing the URI; see Settings.
To enable the container, you can change the setting in user data when starting Bottlerocket, for example EC2 instance user data:
[settings.host-containers.admin] enabled = true
If Bottlerocket is already running, you can enable the admin container from the default control container like this:
enable-admin-container
Or you can start an interactive session immediately like this:
enter-admin-container
If you're using a custom control container, or want to make the API calls directly, you can enable the admin container like this instead:
apiclient set host-containers.admin.enabled=true
Once you've enabled the admin container, you can either access it through SSH or execute commands from the control container like this:
apiclient exec admin bash
Once you're in the admin container, you can run sheltie
to get a full root shell in the Bottlerocket host.
Be careful; while you can inspect and change even more as root, Bottlerocket's filesystem and dm-verity setup will prevent most changes from persisting over a restart - see Security.
Rather than a package manager that updates individual pieces of software, Bottlerocket downloads a full filesystem image and reboots into it. It can automatically roll back if boot failures occur, and workload failures can trigger manual rollbacks.
The update process uses images secured by TUF. For more details, see the update system documentation.
There are several ways of updating your Bottlerocket hosts. We provide tools for automatically updating hosts, as well as an API for direct control of updates.
For EKS variants of Bottlerocket, we recommend using the Bottlerocket update operator for automated updates.
For the ECS variant of Bottlerocket, we recommend using the Bottlerocket ECS updater for automated updates.
The Bottlerocket API includes methods for checking and starting system updates. You can read more about the update APIs in our update system documentation.
apiclient knows how to handle those update APIs for you, and you can run it from the control or admin containers.
To see what updates are available:
apiclient update check
If an update is available, it will show up in the chosen_update
field.
The available_updates
field will show the full list of available versions, including older versions, because Bottlerocket supports safely rolling back.
To apply the latest update:
apiclient update apply
The next time you reboot, you'll start up in the new version, and system configuration will be automatically migrated. To reboot right away:
apiclient reboot
If you're confident about updating, the apiclient update apply
command has --check
and --reboot
flags to combine the above actions, so you can accomplish all of the above steps like this:
apiclient update apply --check --reboot
See the apiclient documentation for more details.
The system will automatically roll back if it's unable to boot. If the update is not functional for a given container workload, you can do a manual rollback:
signpost rollback-to-inactive reboot
This doesn't require any external communication, so it's quicker than apiclient
, and it's made to be as reliable as possible.
Here we'll describe the settings you can configure on your Bottlerocket instance, and how to do it.
(API endpoints are defined in our OpenAPI spec if you want more detail.)
You can see the current settings with an API request:
apiclient get settings
This will return all of the current settings in JSON format. For example, here's an abbreviated response:
{"motd": "...", {"kubernetes": {}}}
You can change settings like this:
apiclient set motd="hi there" kubernetes.node-labels.environment=test
You can also use a JSON input mode to help change many related settings at once, and a "raw" mode if you want more control over how the settings are committed and applied to the system. See the apiclient README for details.
If you know what settings you want to change when you start your Bottlerocket instance, you can send them in the user data.
In user data, we structure the settings in TOML form to make things a bit simpler. Here's the user data to change the message of the day setting, as we did in the last section:
[settings] motd = "my own value!"
If your user data is over the size limit of the platform (e.g. 16KiB for EC2) you can compress the contents with gzip.
(With aws-cli, you can use --user-data fileb:///path/to/gz-file
to pass binary data.)
Here we'll describe each setting you can change.
Note: You can see the default values (for any settings that are not generated at runtime) by looking in the defaults.d
directory for a variant, for example aws-ecs-2.
When you're sending settings to the API, or receiving settings from the API, they're in a structured JSON format. This allows modification of any number of keys at once. It also lets us ensure that they fit the definition of the Bottlerocket data model - requests with invalid settings won't even parse correctly, helping ensure safety.
Here, however, we'll use the shortcut "dotted key" syntax for referring to keys. This is used in some API endpoints with less-structured requests or responses. It's also more compact for our needs here.
In this format, "settings.kubernetes.cluster-name" refers to the same key as in the JSON {"settings": {"kubernetes": {"cluster-name": "value"}}}
.
NOTE: bottlerocket.dev now contains a complete, versioned setting reference. This documents retains the headings below for existing link and bookmark compatability. Please update your bookmarks and check out bottlerocket.dev for future updates to the setting reference.
See the settings.motd
reference.
See the settings.kubernetes.*
reference.
See the settings.ecs.*
reference.
See the
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作 改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都 能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号