[中文|英文]
BytePiece是一个基于字节的Unigram分词器,采用纯Python实现,更易于阅读和扩展。由于采用了新的训练算法,通常能够比现有的分词器获得更高的压缩率,同时支持多进程加速训练。此外,它直接操作文本的UTF-8字节,几乎不进行任何预处理,因此更加纯粹和语言无关。
博客:
理想的分词器及其训练算法应具备以下特点:
目前主流的SentencePiece基本上已经具备上述特性,但仍存在一些问题。例如:它支持BPE和Unigram两种算法,BPE压缩率通常更高,但训练极慢且非常耗内存;它仍对文本进行了少量与语言相关的预处理,因此在"语言无关"这一点上并不够纯粹。此外,它是用C++编写的,对大多数用户来说是一个黑盒,不利于研究和修改。
BytePiece设计了一种新的基于**字节N-gram语言模型(BNLM)**的训练方法,能够获得更高压缩率的词表,同时支持多进程训练,在相同语料下比SentencePiece的BPE训练明显更快。代码采用纯Python实现,方便大家阅读和二次修改。此外,BytePiece还提供了比Subword Regularization更高效的随机分词算法。
BytePiece并非简单地基于字节和多进程重写现有的Unigram模型,而是为Unigram设计了新的训练方案,这是它能够获得更高压缩率的关键原因之一。
新的训练方案基于N-gram语言模型的新词发现算法,首次提出于作者7年前的博客《【中文分词系列】 5. 基于语言模型的无监督分词》,详细内容请移步阅读。
关于新的随机分词算法,可以参考《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》和《随机分词再探:从Viterbi Sampling到完美采样算法》。
BytePiece只能在Python3上运行,使用了pyahocorasick来加速训练过程。由于BytePiece是基于字节的,而PyPi上的pyahocorasick是基于Unicode的,因此不能直接使用,需要按照以下方式安装基于字节的pyahocorasick版本:
# 如果已经安装,请先卸载 pip uninstall pyahocorasick # 直接从git编译安装,注意要传入环境变量AHOCORASICK_BYTES AHOCORASICK_BYTES=1 pip install git+https://github.com/WojciechMula/pyahocorasick.git
然后安装Cython:
pip install Cython
安装完成后,就可以使用pip安装BytePiece了:
pip install bytepiece==0.6.3
BytePiece的所有源代码实际上就是一个单文件,包含Trainer
和Tokenizer
两个类,分别用于训练和分词。
训练Tokenizer只需要导入Trainer
类:
from bytepiece import Trainer
然后准备训练语料。BytePiece支持不一次性将所有语料读入内存,但由于BytePiece训练需要遍历两遍数据,所以不支持Generator输入,而是要写成Iterator的形式,例如:
import json class corpus: def __iter__(self): f = 'data_sample.json' with open(f) as f: for l in f: yield json.loads(l)['text'] # 每次返回一个Unicode字符串
然后就可以正式开始训练了:
trainer = Trainer(order=6, max_vocab_size=100000, min_count=32) trainer.train(corpus(), workers=64, batch_size=1000) trainer.save('bytepiece.model')
这里的order
就是n-gram语言模型的阶数,建议默认使用order=6
;max_vocab_size
是词表的最大尺寸,注意由于去除冗余的原因,最终得到的词表大小可能不会精确等于max_vocab_size,而是可能略小于该值;min_count
是token的最低出现频次,数据量大时可以适当调高,通常不会明显影响训练结果;workers
是并行训练的进程数,可以充分利用机器的所有核心;batch_size
是批处理大小,不会影响训练结果,一般情况下无需修改,如果发现CPU利用率不足可以适当调大。
此外,从0.4.1
版本开始新增isolate_digits
参数,默认为False
,当设置为True
时,可以确保将所有阿拉伯数字都切分为单个字符:
trainer = Trainer(order=6, max_vocab_size=100000, min_count=32, isolate_digits=True)
从0.6.0
版本开始新增ensure_unicode
参数,能够保证所有的多字节token都可以还原为unicode。由于目前结果显示启用ensure_unicode
后,训练得到的模型压缩率通常还更高,所以默认设置为True
。当设置为False
时(等同于0.6.0之前的版本),多字节token可能需要使用decode(errors='ignore')
才能还原为unicode:
trainer = Trainer(order=6, max_vocab_size=100000, min_count=32, ensure_unicode=True)
训练完成后,参考使用方式:
from bytepiece import Tokenizer tokenizer = Tokenizer('bytepiece.model') text = '今天天气不错' tokens = tokenizer.tokenize(text) # 返回bytes类型的列表 print(b' '.join(tokens).decode(errors='ignore')) # 可视化分词结果 ids = tokenizer.encode(text) # 返回tokens对应的ids print(tokenizer.decode(ids)) # 重新将ids解码为unicode文本 ids = tokenizer.encode(text, iter=True) # 返回ids的generator tokens = tokenizer.tokenize(text, alpha=0.2) # 随机tokenize print(b' '.join(tokens).decode(errors='ignore')) # 可视化分词结 果
小数据量对比:
训练时间↓ | 最大内存占用↓ | 压缩率↑ | 分词速度↑ | |
---|---|---|---|---|
SP-BPE | 55.3分钟 | 5.2GB | 4.80 | 5.47 |
SP-Unigram | 1.6分钟 | 2.5GB | 4.73 | 7.84 |
BytePiece | 6.5分钟 | 4.3GB | 5.05 | 2.50 |
大数据量对比:
训练时间↓ | 最大内存占用↓ | 压缩率(同源)↑ | 压缩率(异源)↑ | 分词速度↑ | |
---|---|---|---|---|---|
SP-BPE | 19.21小时 | 97GB | 4.52 | 4.46 | 1.27 |
SP-Unigram | 2.02小时 | 384GB | 4.51 | 4.48 | 5.55 |
BytePiece | 2.24小时 | 51GB | 5.39 | 4.51 | 1.92 |
压缩率的单位是"bytes/token",即平均每个token对应的字节数;速度的单位是"M bytes/second",即平均每秒可以切分的字节数(以百万为单位)。其他细节请参考这里。
第一个表格的数据集平均长度较短,BytePiece同时慢于SP-BPE和SP-Unigram;在第二个表格中,语料的平均长度普遍更长,出现了BytePiece的速度优于SP-BPE的结果。这说明BPE的分词速度受长度影响比较明显,也说明经过Cython加速的BytePiece分词速度,速度上已经可以跟SentencePiece相比较。
下载开源的BytePiece模型请移步到models。
0.6.2
版开始引入convert_to_sentencepiece
方法,支持将ensure_unicode
版模型转为sentencepiece模型,并用sentencepiece加载:
from bytepiece import Tokenizer tokenizer1 = Tokenizer('bytepiece.model') tokenizer1.convert_to_sentencepiece('bytepiece_sp.model') import sentencepiece as spm tokenizer2 = spm.SentencePieceProcessor('bytepiece_sp.model') tokenizer1.encode('今天天气不错') tokenizer2.encode('今天天气不错')
对于大部分输入,两个版本的模型都能够获得相同的分词结果和相同的编码ids。但无论如何,bytepiece和sentencepiece的处理逻辑不完全一样,bytepiece更加纯粹一些,而sentencepiece加了很多莫须有的预处理操作,这导致两个版本的模型无法完全对齐。目前已知的问题之一是,当输入包含多个连续换行符(\n)时,分词结果可能会有分歧。
@misc{bytepiece2023,
title={BytePiece: A more pure and effective tokenizer},
author={Jianlin Su},
year={2023},
howpublished={\url{https://github.com/bojone/bytepiece}},
}
QQ群:67729435,微信群请加机器人spaces_ac_cn
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号