全面的编程、数学和科学免费学习资源集锦
该项目整合了计算机编程、数学和科学领域的免费学习资源。内容涉及人工智能、机器学习、算法、图形学、网络编程等多个方向,从入门到高级主题一应俱全。提供的教材、教程和在线课程链接质量上乘,为自学者提供了系统学习的路径。资源列表涵盖广泛,从基础编程到前沿科技领域均有涉及。汇集了众多高质量的免费教程、电子书和在线课程,适合不同层次的学习者使用。内容持续更新,紧跟技术发展趋势,是编程爱好者和科技从业者的理想学习参考。
This is a list of links to different freely available learning resources about computer programming, math, and science.
A Course in Machine Learning by Hal Daumé III
A Visual Guide to Quantization: Demystifying the Compression of Large Language Models by Maarten Grootendorst
Alice’s Adventures in a differentiable wonderland by Simone Scardapane
An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Rob Tibshirani
Applied Machine Learning for Tabular Data by Max Kuhn and Kjell Johnson
Crash Course in Deep Learning (for Computer Graphics) by Jakub Boksansky [alternative link]
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control by Steven L. Brunton and J. Nathan Kutz [pdf]
Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville
Deep Learning Course by François Fleuret
Deep Learning: Foundations and Concepts by Chris Bishop with Hugh Bishop
Deep Learning Interviews by Shlomo Kashani and Amir Ivry
Information Theory, Inference, and Learning Algorithms by David MacKay
Introduction to ggml by Xuan Son NGUYEN, Georgi Gerganov and slaren
Introduction to Machine Learning Interviews by Chip Huyen
Learning Theory from First Principles by Francis Bach [pdf]
Machine Learning Engineering Book by Andriy Burkov
Machine Learning Engineering Open Book by Stas Bekman
Mathematical Introduction to Deep Learning: Methods, Implementations, and Theory by Arnulf Jentzen, Benno Kuckuck, Philippe von Wurstemberger
Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong
Neural Networks: Zero to Hero - A course by Andrej Karpathy
Neural Networks and Deep Learning by Michael Nielsen
Physics-based Deep Learning by N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost, K. Um
Probabilistic Machine Learning: An Introduction by Kevin Patrick Murphy
Probabilistic Machine Learning: Advanced Topics by Kevin Patrick Murphy
Speech and Language Processing, 3rd edition by Daniel Jurafsky and James H. Martin
The Elements of Differentiable Programming by Mathieu Blondel and Vincent Roulet
The Engineer's Guide To Deep Learning by Hironobu Suzuki
The Hundred Page Machine Learning Book by Andriy Burkov
The Little Book of Deep Learning by François Fleuret
Understanding Deep Learning by Simon J.D. Prince
Game AI Pro by Steve Rabin
Programming Starcraft AI by Peter Kis
Algorithms by Jeff Erickson
Algorithms and Data Structures by Kurt Mehlhorn and Peter Sanders [pdf]
Algorithms for Decision Making by Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray
Algorithms for Optimization by Mykel J. Kochenderfer and Tim A. Wheeler
Algorithms for Modern Hardware by Sergey Slotin
Clever Algorithms: Nature-Inspired Programming Recipes by Jason Brownlee
Collision Detection by Jeff Thompson
Competitive Programmer's Handbook by Antti Laaksonen
Data Structures for Data-Intensive Applications: Tradeoffs and Design Guidelines by Manos Athanassoulis , Stratos Idreos and Dennis Shasha [pdf]
Exact String Matching Algorithms by Christian Charras and Thierry Lecroq
Foundations of Data Science by Avrim Blum, John Hopcroft, and Ravindran Kannan [pdf]
How does B-tree make your queries fast? by Mateusz Kuźmik
Introduction to Algorithms: A Creative Approach by Udi Manber [pdf]
Kalman Filter from the Ground Up by Alex Becker
Monte-Carlo Graph Search from First Principles by David J Wu
Planning Algorithms by Steven M. LaValle
Principles of Algorithmic Problem Solving by Johan Sannemo
Problem Solving with Algorithms and Data Structures using Python by Brad Miller and David Ranum
Purely Functional Data Structures by Chris Okasaki [pdf]
Sequential and Parallel Data Structures and Algorithms: The Basic Toolbox by Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev
The Algorithmic Beauty of Plants by Przemyslaw Prusinkiewicz and Aristid Lindenmayer [pdf]
Driving Compilers by Fabien Sanglard
Getting started with tmux by ittavern
How I'm still not using GUIs: A guide to the terminal by Lucas Fernandes da Costa
How is a binary executable organized? Let's explore it! by Julia Evans
Learn Makefiles: With the tastiest examples by Chase Lambert
NixOS & Flakes Book - An unofficial book for beginners by Ryan Yin
Use Midnight Commander like a pro by Igor Klimer
Curl Exercises by Julia Evans
Mastering curl: interactive text guide by Anton Zhiyanov
Effective Shell by Dave Kerr
Linux command line for you and me by Kushal Das
The Linux Command Handbook by Flavio Copes
The Linux Command Line by William Shotts
Build Your Own Lisp by Daniel Holden
Building the fastest Lua interpreter.. automatically! by Haoran Xu
Crafting Interpreters by Robert Nystrom
Creating the Bolt Compiler by Mukul Rathi
Essentials of Compilation: An Incremental Approach by Geremy G. Siek
How Clang Compiles a Function by John Regehr
How LLVM Optimizes a Function by John Regehr
Let's Build a Compiler by Jack Crenshaw
Let's make a Teeny Tiny compiler by Austin Z. Henley
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部 署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作 —国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号