obsidian-dataview

obsidian-dataview

将Obsidian笔记库转化为可查询数据库的强大插件

Obsidian Dataview插件将笔记库转为可查询数据库,提供多种查询方式处理Markdown数据。支持元数据添加,可创建动态视图,增强Obsidian数据管理和可视化功能。适用于需要高效组织和分析笔记数据的用户。

ObsidianDataview数据查询Markdown元数据Github开源项目

Obsidian Dataview

Treat your Obsidian Vault as a database which you can query from. Provides a JavaScript API and pipeline-based query language for filtering, sorting, and extracting data from Markdown pages. See the Examples section below for some quick examples, or the full reference for all the details.

Examples

Show all games in the game folder, sorted by rating, with some metadata:

```dataview table time-played, length, rating from "games" sort rating desc ```

Game Example


List games which are MOBAs or CRPGs.

```dataview list from #game/moba or #game/crpg ```

Game List


List all markdown tasks in un-completed projects:

```dataview task from #projects/active ```

Task List


Show all files in the books folder that you read in 2021, grouped by genre and sorted by rating:

```dataviewjs for (let group of dv.pages("#book").where(p => p["time-read"].year == 2021).groupBy(p => p.genre)) { dv.header(3, group.key); dv.table(["Name", "Time Read", "Rating"], group.rows .sort(k => k.rating, 'desc') .map(k => [k.file.link, k["time-read"], k.rating])) } ```

Books By Genre

Usage

For a full description of all features, instructions, and examples, see the reference. For a more brief outline, let us examine the two major aspects of Dataview: data and querying.

Data

Dataview generates data from your vault by pulling information from Markdown frontmatter and Inline fields.

  • Markdown frontmatter is arbitrary YAML enclosed by --- at the top of a markdown document which can store metadata about that document.
  • Inline fields are a Dataview feature which allow you to write metadata directly inline in your markdown document via Key:: Value syntax.

Examples of both are shown below:

--- alias: "document" last-reviewed: 2021-08-17 thoughts: rating: 8 reviewable: false ---
# Markdown Page Basic Field:: Value **Bold Field**:: Nice! You can also write [field:: inline fields]; multiple [field2:: on the same line]. If you want to hide the (field3:: key), you can do that too.

Querying

Once you've annotated documents and the like with metadata, you can then query it using any of Dataview's four query modes:

  1. Dataview Query Language (DQL): A pipeline-based, vaguely SQL-looking expression language which can support basic use cases. See the documentation for details.

    ```dataview TABLE file.name AS "File", rating AS "Rating" FROM #book ```
  2. Inline Expressions: DQL expressions which you can embed directly inside markdown and which will be evaluated in preview mode. See the documentation for allowable queries.

    We are on page `= this.file.name`.
  3. DataviewJS: A high-powered JavaScript API which gives full access to the Dataview index and some convenient rendering utilities. Highly recommended if you know JavaScript, since this is far more powerful than the query language. Check the documentation for more details.

    ```dataviewjs dv.taskList(dv.pages().file.tasks.where(t => !t.completed)); ```
  4. Inline JS Expressions: The JavaScript equivalent to inline expressions, which allow you to execute arbitrary JS inline:

    This page was last modified at `$= dv.current().file.mtime`.

JavaScript Queries: Security Note

JavaScript queries are very powerful, but they run at the same level of access as any other Obsidian plugin. This means they can potentially rewrite, create, or delete files, as well as make network calls. You should generally write JavaScript queries yourself or use scripts that you understand or that come from reputable sources. Regular Dataview queries are sandboxed and cannot make negative changes to your vault (in exchange for being much more limited).

Contributing

Contributions via bug reports, bug fixes, documentation, and general improvements are always welcome. For more major feature work, make an issue about the feature idea / reach out to me so we can judge feasibility and how best to implement it.

Local Development

The codebase is written in TypeScript and uses rollup / node for compilation; for a first time set up, all you should need to do is pull, install, and build:

foo@bar:~$ git clone git@github.com:blacksmithgu/obsidian-dataview.git foo@bar:~$ cd obsidian-dataview foo@bar:~/obsidian-dataview$ npm install foo@bar:~/obsidian-dataview$ npm run dev

This will install libraries, build dataview, and deploy it to test-vault, which you can then open in Obsidian. This will also put rollup in watch mode, so any changes to the code will be re-compiled and the test vault will automatically reload itself.

Installing to Other Vaults

If you want to dogfood dataview in your real vault, you can build and install manually. Dataview is predominantly a read-only store, so this should be safe, but watch out if you are adjusting functionality that performs file edits!

foo@bar:~/obsidian-dataview$ npm run build foo@bar:~/obsidian-dataview$ ./scripts/install-built path/to/your/vault

Building Documentation

We use MkDocs for documentation (found in docs/). You'll need to have python and pip to run it locally:

foo@bar:~/obsidian-dataview$ pip3 install mkdocs mkdocs-material mkdocs-redirects foo@bar:~/obsidian-dataview$ cd docs foo@bar:~/obsidian-dataview/docs$ mkdocs serve

This will start a local web server rendering the documentation in docs/docs, which will live-reload on change. Documentation changes are automatically pushed to blacksmithgu.github.io/obsidian-dataview once they are merged to the main branch.

Using Dataview Types In Your Own Plugin

Dataview publishes TypeScript typings for all of its APIs onto NPM (as blacksmithgu/obsidian-dataview). For instructions on how to set up development using Dataview, see setup instructions.

Support

Have you found the Dataview plugin helpful, and want to support it? I accept donations which go towards future development efforts. I generally do not accept payment for bug bounties/feature requests, as financial incentives add stress/expectations which I want to avoid for a hobby project!

paypal

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多