rules_docker

rules_docker

Bazel规则集简化Docker容器构建与管理

rules_docker是一套Bazel规则集,用于构建和管理Docker容器。它无需使用Docker即可拉取基础镜像、增强构建产物和发布镜像。该项目支持Python、Java、Go等多种语言的容器化规则,简化了应用程序容器化过程。虽然目前已停止维护,rules_docker仍是一个功能完善的容器化工具,值得开发者了解和参考。

Bazel容器镜像规则Docker构建容器持续集成Github开源项目

Bazel Container Image Rules

Bazel CI
Build status

Status

🚨 rules_docker is no longer maintained and deprecated. Please see rules_oci for a better designed and maintained alternative.

Basic Rules

These rules used to be docker_build, docker_push, etc. and the aliases for these (mostly) legacy names still exist largely for backwards-compatibility. We also have early-stage oci_image, oci_push, etc. aliases for folks that enjoy the consistency of a consistent rule prefix. The only place the format-specific names currently do any more than alias things is in foo_push, where they also specify the appropriate format as which to publish the image.

Overview

This repository contains a set of rules for pulling down base images, augmenting them with build artifacts and assets, and publishing those images. These rules do not require / use Docker for pulling, building, or pushing images. This means:

  • They can be used to develop Docker containers on OSX without boot2docker or docker-machine installed. Note use of these rules on Windows is currently not supported.
  • They do not require root access on your workstation.

Also, unlike traditional container builds (e.g. Dockerfile), the Docker images produced by container_image are deterministic / reproducible.

To get started with building Docker images, check out the examples that build the same images using both rules_docker and a Dockerfile.

NOTE: container_push and container_pull make use of google/go-containerregistry for registry interactions.

Language Rules

It is notable that: cc_image, go_image, rust_image, and d_image also allow you to specify an external binary target.

Docker Rules

This repo now includes rules that provide additional functionality to install packages and run commands inside docker containers. These rules, however, require a docker binary is present and properly configured. These rules include:

Overview

In addition to low-level rules for building containers, this repository provides a set of higher-level rules for containerizing applications. The idea behind these rules is to make containerizing an application built via a lang_binary rule as simple as changing it to lang_image.

By default these higher level rules make use of the distroless language runtimes, but these can be overridden via the base="..." attribute (e.g. with a container_pull or container_image target).

Note also that these rules do not expose any docker related attributes. If you need to add a custom env or symlink to a lang_image, you must use container_image targets for this purpose. Specifically, you can use as base for your lang_image target a container_image target that adds e.g., custom env or symlink. Please see <a href=#go_image-custom-base>go_image (custom base)</a> for an example.

Setup

Add the following to your WORKSPACE file to add the external repositories:

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") http_archive( # Get copy paste instructions for the http_archive attributes from the # release notes at https://github.com/bazelbuild/rules_docker/releases ) # OPTIONAL: Call this to override the default docker toolchain configuration. # This call should be placed BEFORE the call to "container_repositories" below # to actually override the default toolchain configuration. # Note this is only required if you actually want to call # docker_toolchain_configure with a custom attr; please read the toolchains # docs in /toolchains/docker/ before blindly adding this to your WORKSPACE. # BEGIN OPTIONAL segment: load("@io_bazel_rules_docker//toolchains/docker:toolchain.bzl", docker_toolchain_configure="toolchain_configure" ) docker_toolchain_configure( name = "docker_config", # OPTIONAL: Bazel target for the build_tar tool, must be compatible with build_tar.py build_tar_target="<enter absolute path (i.e., must start with repo name @...//:...) to an executable build_tar target>", # OPTIONAL: Path to a directory which has a custom docker client config.json. # See https://docs.docker.com/engine/reference/commandline/cli/#configuration-files # for more details. client_config="<enter Bazel label to your docker config.json here>", # OPTIONAL: Path to the docker binary. # Should be set explicitly for remote execution. docker_path="<enter absolute path to the docker binary (in the remote exec env) here>", # OPTIONAL: Path to the gzip binary. gzip_path="<enter absolute path to the gzip binary (in the remote exec env) here>", # OPTIONAL: Bazel target for the gzip tool. gzip_target="<enter absolute path (i.e., must start with repo name @...//:...) to an executable gzip target>", # OPTIONAL: Path to the xz binary. # Should be set explicitly for remote execution. xz_path="<enter absolute path to the xz binary (in the remote exec env) here>", # OPTIONAL: Bazel target for the xz tool. # Either xz_path or xz_target should be set explicitly for remote execution. xz_target="<enter absolute path (i.e., must start with repo name @...//:...) to an executable xz target>", # OPTIONAL: List of additional flags to pass to the docker command. docker_flags = [ "--tls", "--log-level=info", ], ) # End of OPTIONAL segment. load( "@io_bazel_rules_docker//repositories:repositories.bzl", container_repositories = "repositories", ) container_repositories() load("@io_bazel_rules_docker//repositories:deps.bzl", container_deps = "deps") container_deps() load( "@io_bazel_rules_docker//container:container.bzl", "container_pull", ) container_pull( name = "java_base", registry = "gcr.io", repository = "distroless/java", # 'tag' is also supported, but digest is encouraged for reproducibility. digest = "sha256:deadbeef", )

Known Issues

  • Bazel does not deal well with diamond dependencies.

If the repositories that are imported by container_repositories() have already been imported (at a different version) by other rules you called in your WORKSPACE, which are placed above the call to container_repositories(), arbitrary errors might occur. If you get errors related to external repositories, you will likely not be able to use container_repositories() and will have to import directly in your WORKSPACE all the required dependencies (see the most up to date impl of container_repositories() for details).

  • ImportError: No module named moves.urllib.parse

This is an example of an error due to a diamond dependency. If you get this error, make sure to import rules_docker before other libraries, so that six can be patched properly.

See https://github.com/bazelbuild/rules_docker/issues/1022 for more details.

  • Ensure your project has a BUILD or BUILD.bazel file at the top level. This can be a blank file if necessary. Otherwise you might see an error that looks like:
Unable to load package for //:WORKSPACE: BUILD file not found in any of the following directories.
  • rules_docker uses transitions to build your containers using toolchains the correct architecture and operating system. If you run into issues with toolchain resolutions, you can disable this behaviour, by adding this to your .bazelrc:
build --@io_bazel_rules_docker//transitions:enable=false

Using with Docker locally.

Suppose you have a container_image target //my/image:helloworld:

container_image( name = "helloworld", ... )

You can load this into your local Docker client by running: bazel run my/image:helloworld.

For the lang_image targets, this will also run the container using docker run to maximize compatibility with lang_binary rules.

Arguments to this command are forwarded to docker, meaning the command

bazel run my/image:helloworld -- -p 8080:80 -- arg0

performs the following steps:

  • load the my/image:helloworld target into your local Docker client
  • start a container using this image where arg0 is passed to the image entrypoint
  • port forward 8080 on the host to port 80 on the container, as per docker run documentation

You can suppress this behavior by passing the single flag: bazel run :foo -- --norun

Alternatively, you can build a docker load compatible bundle with: bazel build my/image:helloworld.tar. This will produce a tar file in your bazel-out directory that can be loaded into your local Docker client. Building this target can be expensive for large images. You will first need to query the ouput file location.

TARBALL_LOCATION=$(bazel cquery my/image:helloworld.tar \ --output starlark \ --starlark:expr="target.files.to_list()[0].path") docker load -i $TARBALL_LOCATION

These work with both container_image, container_bundle, and the lang_image rules. For everything except container_bundle, the image name will be bazel/my/image:helloworld. The container_bundle rule will apply the tags you have specified.

Authentication

You can use these rules to access private images using standard Docker authentication methods. e.g. to utilize the Google Container Registry. See here for authentication methods.

See also:

Once you've setup your docker client configuration, see here for an example of how to use container_pull with custom docker authentication credentials and here for an example of how to use container_push with custom docker authentication credentials.

Varying image names

A common request from folks using container_push, container_bundle, or container_image is to be able to vary the tag that is pushed or embedded. There are two options at present for doing this.

Stamping

The first option is to use stamping. Stamping is enabled when bazel is run with --stamp. This enables replacements in stamp-aware attributes. A python format placeholder (e.g. {BUILD_USER}) is replaced by the value of the corresponding workspace-status variable.

# A common pattern when users want to avoid trampling # on each other's images during development. container_push( name = "publish", format = "Docker", # Any of these components may have variables. registry = "gcr.io", repository = "my-project/my-image", # This will be replaced with the current user when built with --stamp tag = "{BUILD_USER}", )

Rules that are sensitive to stamping can also be forced to stamp or non-stamp mode irrespective of the --stamp flag to Bazel. Use the build_context_data rule to make a target that provides StampSettingInfo, and pass this to the build_context_data attribute.

The next natural question is: "Well what variables can I use?" This option consumes the workspace-status variables Bazel defines in bazel-out/stable-status.txt and bazel-out/volatile-status.txt.

Note that changes to the stable-status file cause a rebuild of the action, while volatile-status does not.

You can add more stamp variables via --workspace_status_command, see the bazel docs. A common example is to provide the current git SHA, with --workspace_status_command="echo STABLE_GIT_SHA $(git rev-parse HEAD)"

That flag is typically passed in the .bazelrc file, see for example .bazelrc in kubernetes.

Make variables

The second option is to employ Makefile-style variables:

container_bundle( name = "bundle", images = { "gcr.io/$(project)/frontend:latest": "//frontend:image", "gcr.io/$(project)/backend:latest": "//backend:image", } )

These variables are specified on the CLI using:

bazel build --define project=blah //path/to:bundle

Debugging lang_image rules

By default the lang_image rules use the distroless base runtime images, which are optimized to be the minimal set of things your application needs at runtime. That can make debugging these containers difficult because they lack even a basic shell for exploring the filesystem.

To address this, we publish variants of the distroless runtime images tagged :debug, which are the exact-same images, but with additions such as busybox to make debugging easier.

For example (in this repo):

$ bazel run -c dbg testdata:go_image ... INFO: Build completed successfully, 5 total actions INFO: Running command line: bazel-bin/testdata/go_image Loaded image ID: sha256:9c5c2167a1db080a64b5b401b43b3c5cdabb265b26cf7a60aabe04a20da79e24 Tagging 9c5c2167a1db080a64b5b401b43b3c5cdabb265b26cf7a60aabe04a20da79e24 as bazel/testdata:go_image Hello, world! $ docker run -ti --rm --entrypoint=sh bazel/testdata:go_image -c "echo Hello, busybox." Hello, busybox.

Examples

container_image

container_image( name = "app", # References container_pull from WORKSPACE (above) base = "@java_base//image", files = ["//java/com/example/app:Hello_deploy.jar"], cmd = ["Hello_deploy.jar"] )

Hint: if you want to put files in specific directories inside the image use <a href="https://docs.bazel.build/versions/master/be/pkg.html">pkg_tar rule</a> to create the desired directory structure and pass that to container_image via tars attribute. Note you might need to set strip_prefix = "." or strip_prefix = "{some directory}" in your rule for the files to not be flattened. See <a href="https://github.com/bazelbuild/bazel/issues/2176">Bazel upstream issue 2176</a> and <a href="https://github.com/bazelbuild/rules_docker/issues/317">rules_docker issue 317</a> for more details.

cc_image

To use cc_image, add the following to WORKSPACE:

load( "@io_bazel_rules_docker//repositories:repositories.bzl", container_repositories = "repositories", ) container_repositories() load(

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多