bark

bark

自动驾驶语义仿真与行为模型开发框架

BARK是一个开源的自动驾驶语义仿真框架,专注于行为模型的开发和评估。它支持快速构建、训练和基准测试决策算法,尤其适合强化学习等计算密集型任务。BARK提供行为基准测试、Python和C++模型开发等功能,并可与机器学习工具和CARLA仿真器集成。其生态系统包含BARK-ML、BARK-MCTS等多个组件,为自动驾驶行为模型的研究提供全面支持。

BARK自动驾驶行为模型仿真框架基准测试Github开源项目
<p align="center"> <img src="https://github.com/bark-simulator/bark/raw/master/docs/source/bark_logo.jpg" alt="BARK" /> </p>

$${\color{red}\text{BARK is not actively developed and maintained any longer.}}$$

$${\color{red}\text{Feel free to fork the repository and continue using BARK under the terms of the MIT license.}}$$

Ubtuntu-CI Build Ubtuntu-ManyLinux Build NIGHTLY LTL Build CI RSS Build NIGHTLY Rules MCTS Build Codacy Badge

BARK - A Tool for Behavior benchmARKing

BARK is a semantic simulation framework for autonomous driving. Its behavior model-centric design allows for the rapid development, training, and benchmarking of various decision-making algorithms. It is especially suited for computationally expensive tasks, such as reinforcement learning. A a good starting point, have a look at the content of our BARK-Tutorial on IROS 2020.

Usage

(A) Pip Package

For whom it is: Python evangelists implementing python behavior models or ML scientists using BARK-ML for learning behaviors.

Bark is available as PIP-Package for Ubuntu and MacOS for Python>=3.7. You can install the latest version with pip install bark-simulator. The Pip package supports full benchmarking functionality of existing behavior models and development of your models within python.

After installing the package, you can have a look at the examples to check how to use BARK.

Highway ExampleMerging ExampleIntersection Example
IntersectionIntersectionIntersection

(B) Build it from Source

For whom it is: C++ developers creating C++ behavior models, researchers performing benchmarks, or contributors to BARK.

Use git clone https://github.com/bark-simulator/bark.git or download the repository from this page. Then follow the instructions at How to Install BARK.

To get step-by-step instructions on how to use BARK, you can run our IPython Notebook tutorials using bazel run //docs/tutorials:run. For a more detailed understanding of how BARK works, its concept and use cases have a look at our documentation.

Example Benchmark is a running example of how to use BARK for benchmarking for scientific purposes.

Scientific Publications using BARK

BARK Ecosystem

The BARK ecosystem is composed of multiple components that all share the common goal to develop and benchmark behavior models:

  • BARK-ML: Machine learning library for decision-making in autonomous driving.
  • BARK-MCTS: Integrates a template-based C++ Monte Carlo Tree Search Library into BARK to support development of both single- and multi-agent search methods.
  • BARK-Rules-MCTS: Integrates traffic rules within Monte Carlo Tree Search with lexicographic ordering.
  • BARK-MIQP: MINIVAN Planner based on MIQP for single- and multi-agent planning. Check out the build instructions.
  • BARK-DB: Provides a framework to integrate multiple BARK scenario sets into a database. The database module supports binary serialization of randomly generated scenarios to ensure exact reproducibility of behavior benchmarks across systems.
  • BARK-Rule-Monitoring: Provides runtime verification of Rules in Linear Temporal Logic (LTL) on simulated BARK traces.
  • CARLA-Interface: A two-way interface between CARLA and BARK. BARK behavior models can control CARLA vehicles. CARLA controlled vehicles are mirrored to BARK.

Paper

If you use BARK, please cite us using the following paper:

@inproceedings{Bernhard2020,
    title = {BARK: Open Behavior Benchmarking in Multi-Agent Environments},
    author = {Bernhard, Julian and Esterle, Klemens and Hart, Patrick and Kessler, Tobias},
    booktitle = {2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
    url = {https://arxiv.org/pdf/2003.02604.pdf},
    year = {2020}
}

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

BARK specific code is distributed under MIT License.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多