bark

bark

自动驾驶语义仿真与行为模型开发框架

BARK是一个开源的自动驾驶语义仿真框架,专注于行为模型的开发和评估。它支持快速构建、训练和基准测试决策算法,尤其适合强化学习等计算密集型任务。BARK提供行为基准测试、Python和C++模型开发等功能,并可与机器学习工具和CARLA仿真器集成。其生态系统包含BARK-ML、BARK-MCTS等多个组件,为自动驾驶行为模型的研究提供全面支持。

BARK自动驾驶行为模型仿真框架基准测试Github开源项目
<p align="center"> <img src="https://github.com/bark-simulator/bark/raw/master/docs/source/bark_logo.jpg" alt="BARK" /> </p>

$${\color{red}\text{BARK is not actively developed and maintained any longer.}}$$

$${\color{red}\text{Feel free to fork the repository and continue using BARK under the terms of the MIT license.}}$$

Ubtuntu-CI Build Ubtuntu-ManyLinux Build NIGHTLY LTL Build CI RSS Build NIGHTLY Rules MCTS Build Codacy Badge

BARK - A Tool for Behavior benchmARKing

BARK is a semantic simulation framework for autonomous driving. Its behavior model-centric design allows for the rapid development, training, and benchmarking of various decision-making algorithms. It is especially suited for computationally expensive tasks, such as reinforcement learning. A a good starting point, have a look at the content of our BARK-Tutorial on IROS 2020.

Usage

(A) Pip Package

For whom it is: Python evangelists implementing python behavior models or ML scientists using BARK-ML for learning behaviors.

Bark is available as PIP-Package for Ubuntu and MacOS for Python>=3.7. You can install the latest version with pip install bark-simulator. The Pip package supports full benchmarking functionality of existing behavior models and development of your models within python.

After installing the package, you can have a look at the examples to check how to use BARK.

Highway ExampleMerging ExampleIntersection Example
IntersectionIntersectionIntersection

(B) Build it from Source

For whom it is: C++ developers creating C++ behavior models, researchers performing benchmarks, or contributors to BARK.

Use git clone https://github.com/bark-simulator/bark.git or download the repository from this page. Then follow the instructions at How to Install BARK.

To get step-by-step instructions on how to use BARK, you can run our IPython Notebook tutorials using bazel run //docs/tutorials:run. For a more detailed understanding of how BARK works, its concept and use cases have a look at our documentation.

Example Benchmark is a running example of how to use BARK for benchmarking for scientific purposes.

Scientific Publications using BARK

BARK Ecosystem

The BARK ecosystem is composed of multiple components that all share the common goal to develop and benchmark behavior models:

  • BARK-ML: Machine learning library for decision-making in autonomous driving.
  • BARK-MCTS: Integrates a template-based C++ Monte Carlo Tree Search Library into BARK to support development of both single- and multi-agent search methods.
  • BARK-Rules-MCTS: Integrates traffic rules within Monte Carlo Tree Search with lexicographic ordering.
  • BARK-MIQP: MINIVAN Planner based on MIQP for single- and multi-agent planning. Check out the build instructions.
  • BARK-DB: Provides a framework to integrate multiple BARK scenario sets into a database. The database module supports binary serialization of randomly generated scenarios to ensure exact reproducibility of behavior benchmarks across systems.
  • BARK-Rule-Monitoring: Provides runtime verification of Rules in Linear Temporal Logic (LTL) on simulated BARK traces.
  • CARLA-Interface: A two-way interface between CARLA and BARK. BARK behavior models can control CARLA vehicles. CARLA controlled vehicles are mirrored to BARK.

Paper

If you use BARK, please cite us using the following paper:

@inproceedings{Bernhard2020,
    title = {BARK: Open Behavior Benchmarking in Multi-Agent Environments},
    author = {Bernhard, Julian and Esterle, Klemens and Hart, Patrick and Kessler, Tobias},
    booktitle = {2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
    url = {https://arxiv.org/pdf/2003.02604.pdf},
    year = {2020}
}

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

BARK specific code is distributed under MIT License.

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多