puck

puck

高效近似最近邻搜索库 专注大规模数据集性能

Puck是一个高效的C++近似最近邻(ANN)搜索库,其名称来源于莎士比亚作品中的精灵角色。该项目包含Puck和Tinker两种算法,在多个1B数据集上表现出色。Puck采用两层倒排索引架构和多级量化,可在有限内存下实现高召回率和低延迟,适用于大规模数据集。Tinker则针对较小数据集优化,性能超过Nmslib。该库支持余弦相似度、L2和IP距离计算,并提供Python接口,方便开发者集成使用。

PuckANN搜索向量索引高性能内存优化Github开源项目

Description

This project is a library for approximate nearest neighbor(ANN) search named Puck. In Industrial deployment scenarios, limited memory, expensive computer resources and increasing database size are as important as the recall-vs-latency tradeof for all search applications. Along with the rapid development of retrieval business service, it has the big demand for the highly recall-vs-latency and precious but finite resource, the borning of Puck is precisely for meeting this kind of need.

It contains two algorithms, Puck and Tinker. This project is written in C++ with wrappers for python3.
Puck is an efficient approache for large-scale dataset, which has the best performance of multiple 1B-datasets in NeurIPS'21 competition track. Since then, performance of Puck has increased by 70%. Puck includes a two-layered architectural design for inverted indices and a multi-level quantization on the dataset. If the memory is going to be a bottleneck, Puck could resolve your problems.
Tinker is an efficient approache for smaller dataset(like 10M, 100M), which has better performance than Nmslib in big-ann-benchmarks. The relationships among similarity points are well thought out, Tinker need more memory to save these. Thinker cost more memory then Puck, but has better performace than Puck. If you want a better searching performance and need not concerned about memory used, Tinker is a better choiese.

Introduction

This project supports cosine similarity, L2(Euclidean) and IP(Inner Product, conditioned). When two vectors are normalized, L2 distance is equal to 2 - 2 * cos. IP2COS is a transform method that convert IP distance to cos distance. The distance value in search result is always L2.

Puck use a compressed vectors(after PQ) instead of the original vectors, the memory cost just over to 1/4 of the original vectors by default. With the increase of datasize, Puck's advantage is more obvious.
Tinker need save relationships of similarity points, the memory cost is more than the original vectors (less than Nmslib) by default. More performance details in benchmarks. Please see this readme for more details.

Linux install

1.The prerequisite is mkl, python and cmake.

MKL: MKL must be installed to compile puck, download the MKL installation package corresponding to the operating system from the official website, and configure the corresponding installation path after the installation is complete. source the MKL component environment script, eg. source ${INSTALL_PATH}/mkl/latest/env/vars.sh. This will maintain many sets of environment variables, like MKLROOT.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html

python: Version higher than 3.6.0.

cmake: Version higher than 3.21.

2.Clone this project.

git clone https://github.com/baidu/puck.git cd puck

3.Use cmake to build this project.

3.1 Build this project
cmake -DCMAKE_BUILD_TYPE=Release -DMKLROOT=${MKLROOT} \ -DBLA_VENDOR=Intel10_64lp_seq \ -DBLA_STATIC=ON \ -B build . cd build && make && make install
3.2 Build with GTEST

Use conditional compilation variable named WITH_TESTING.

cmake -DCMAKE_BUILD_TYPE=Release -DMKLROOT=${MKLROOT} \ -DBLA_VENDOR=Intel10_64lp_seq \ -DBLA_STATIC=ON \ -DWITH_TESTING=ON \ -B build . cd build && make && make install
3.3 Build with Python

Refer to the Dockerfile

python3 setup.py install

Output files are saved in build/output subdirectory by default.

How to use

Output files include demos of train, build and search tools.
Train and build tools are in build/output/build_tools subdirectory.
Search demo tools are in build/output/bin subdirectory.

1.format vector dataset for train and build

The vectors are stored in raw little endian. Each vector takes 4+d*4 bytes for .fvecs format, where d is the dimensionality of the vector.

2.train & build

The default train configuration file is "build/output/build_tools/conf/puck_train.conf". The length of each feature vector must be set in train configuration file (feature_dim).

cd output/build_tools cp YOUR_FEATURE_FILE puck_index/all_data.feat.bin sh script/puck_train_control.sh -t -b

index files are saved in puck_index subdirectory by default.

3.search

During searching, the default value of index files path is './puck_index'.
The format of query file, refer to demo
Search parameters can be modified using a configuration file, refer to demo

cd output/ ln -s build_tools/puck_index . ./bin/search_client YOUR_QUERY_FEATURE_FILE RECALL_FILE_NAME --flagfile=conf/puck.conf

recall results are stored in file RECALL_FILE_NAME.

More Details

more details for puck

Benchmark

Please see this readme for details.

this ann-benchmark is forked from https://github.com/harsha-simhadri/big-ann-benchmarks of 2021.

How to run this benchmark is the same with it. We add support of faiss(IVF,IVF-Flat,HNSW) , nmslib(HNSW),Puck and Tinker of T1 track. And We update algos.yaml of these method using recommended parameters of 4 datasets(bigann-10M, bigann-100M, deep-10M, deep-100M)

Discussion

Join our QQ group if you are interested in this project.

QQ Group

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多