gluonts

gluonts

基于深度学习的概率时间序列建模工具包

GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。

GluonTS时间序列预测Python深度学习概率模型Github开源项目

GluonTS 项目介绍

GluonTS 是一个用于概率时间序列建模的 Python 软件包,其着重于基于深度学习的模型,支持 PyTorch 和 MXNet 两大深度学习框架。GluonTS 的目标是帮助用户通过先进的深度学习方法来处理时间序列数据,进行预测及分析。

安装

GluonTS 支持 Python 3.7 及以上版本,用户可以通过 pip 简单安装。根据需要,用户可以选择安装支持 PyTorch 或 MXNet 的版本:

# 安装支持 PyTorch 的版本 pip install "gluonts[torch]" # 安装支持 MXNet 的版本 pip install "gluonts[mxnet]"

详细的安装说明可以参考 文档

简单实例

为了演示 GluonTS 的使用,我们可以训练一个 DeepAR 模型并对航空乘客数据集进行预测。这个数据集包含了1949年至1960年每月乘客人数的单个时间序列。我们可以使用前九年数据进行训练,并预测之后三年的数据。以下是一个简单的代码示例:

import pandas as pd import matplotlib.pyplot as plt from gluonts.dataset.pandas import PandasDataset from gluonts.dataset.split import split from gluonts.torch import DeepAREstimator # 从CSV文件加载数据到 PandasDataset df = pd.read_csv( "https://raw.githubusercontent.com/AileenNielsen/" "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv", index_col=0, parse_dates=True, ) dataset = PandasDataset(df, target="#Passengers") # 将数据分为训练和测试 training_data, test_gen = split(dataset, offset=-36) test_data = test_gen.generate_instances(prediction_length=12, windows=3) # 训练模型并进行预测 model = DeepAREstimator( prediction_length=12, freq="M", trainer_kwargs={"max_epochs": 5} ).train(training_data) forecasts = list(model.predict(test_data.input)) # 绘制预测结果 plt.plot(df["1954":], color="black") for forecast in forecasts: forecast.plot() plt.legend(["True values"], loc="upper left", fontsize="xx-large") plt.show()

预测结果以概率分布的形式显示,阴影区域代表 50% 和 90% 的预测区间。

贡献与引用

GluonTS 是一个开源项目,欢迎有兴趣的开发者参与贡献。有关贡献的更多信息,请查阅 贡献指南

如果您在学术出版物中使用 GluonTS,我们鼓励您引用以下论文:

@article{gluonts_jmlr, author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and Ali Caner Türkmen and Yuyang Wang}, title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {116}, pages = {1-6}, url = {http://jmlr.org/papers/v21/19-820.html} }

相关链接

教程与研讨会

GluonTS 提供了丰富的教程和研讨会资源,帮助用户深入理解和应用这款工具:

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多