autometrics-py

autometrics-py

Python函数自动化监控与性能分析库

autometrics-py是一个Python库,为函数自动添加关键指标监控。它生成标准化指标和Prometheus查询,支持SLO定义、Grafana仪表盘集成和多种指标收集配置。这些功能有助于开发者快速识别和解决生产环境中的问题,提高代码可观测性。

AutometricsPython指标监控函数装饰器PrometheusGithub开源项目

GitHub_headerImage

Tests Discord Shield

A Python port of the Rust autometrics-rs library

Metrics are a powerful and cost-efficient tool for understanding the health and performance of your code in production. But it's hard to decide what metrics to track and even harder to write queries to understand the data.

Autometrics provides a decorator that makes it trivial to instrument any function with the most useful metrics: request rate, error rate, and latency. It standardizes these metrics and then generates powerful Prometheus queries based on your function details to help you quickly identify and debug issues in production.

See Why Autometrics? for more details on the ideas behind autometrics.

Features

  • @autometrics decorator instruments any function or class method to track the most useful metrics
  • 💡 Writes Prometheus queries so you can understand the data generated without knowing PromQL
  • 🔗 Create links to live Prometheus charts directly into each function's docstring
  • 🔍 Identify commits that introduced errors or increased latency
  • 🚨 Define alerts using SLO best practices directly in your source code
  • 📊 Grafana dashboards work out of the box to visualize the performance of instrumented functions & SLOs
  • ⚙️ Configurable metric collection library (opentelemetry or prometheus)
  • 📍 Attach exemplars to connect metrics with traces
  • ⚡ Minimal runtime overhead

Quickstart

  1. Add autometrics to your project's dependencies:
pip install autometrics
  1. Instrument your functions with the @autometrics decorator
from autometrics import autometrics @autometrics def my_function(): # ...
  1. Configure autometrics by calling the init function:
from autometrics import init init(tracker="prometheus", service_name="my-service")
  1. Export the metrics for Prometheus
# This example uses FastAPI, but you can use any web framework from fastapi import FastAPI, Response from prometheus_client import generate_latest # Set up a metrics endpoint for Prometheus to scrape # `generate_latest` returns metrics data in the Prometheus text format @app.get("/metrics") def metrics(): return Response(generate_latest())
  1. Run Prometheus locally with the Autometrics CLI or configure it manually to scrape your metrics endpoint
# Replace `8080` with the port that your app runs on am start :8080
  1. (Optional) If you have Grafana, import the Autometrics dashboards for an overview and detailed view of all the function metrics you've collected

Using autometrics-py

  • You can import the library in your code and use the decorator for any function:
from autometrics import autometrics @autometrics def sayHello: return "hello"
  • To show tooltips over decorated functions in VSCode, with links to Prometheus queries, try installing the VSCode extension.

    Note: We cannot support tooltips without a VSCode extension due to behavior of the static analyzer used in VSCode.

  • You can also track the number of concurrent calls to a function by using the track_concurrency argument: @autometrics(track_concurrency=True).

    Note: Concurrency tracking is only supported when you set with the environment variable AUTOMETRICS_TRACKER=prometheus.

  • To access the PromQL queries for your decorated functions, run help(yourfunction) or print(yourfunction.__doc__).

    For these queries to work, include a .env file in your project with your prometheus endpoint PROMETHEUS_URL=your endpoint. If this is not defined, the default endpoint will be http://localhost:9090/

Dashboards

Autometrics provides Grafana dashboards that will work for any project instrumented with the library.

Alerts / SLOs

Autometrics makes it easy to add intelligent alerting to your code, in order to catch increases in the error rate or latency across multiple functions.

from autometrics import autometrics from autometrics.objectives import Objective, ObjectiveLatency, ObjectivePercentile # Create an objective for a high success rate # Here, we want our API to have a success rate of 99.9% API_SLO_HIGH_SUCCESS = Objective( "My API SLO for High Success Rate (99.9%)", success_rate=ObjectivePercentile.P99_9, ) @autometrics(objective=API_SLO_HIGH_SUCCESS) def api_handler(): # ...

The library uses the concept of Service-Level Objectives (SLOs) to define the acceptable error rate and latency for groups of functions. Alerts will fire depending on the SLOs you set.

Not sure what SLOs are? Check out our docs for an introduction.

In order to receive alerts, you need to add a special set of rules to your Prometheus setup. These are configured automatically when you use the Autometrics CLI to run Prometheus.

Already running Prometheus yourself? Read about how to load the autometrics alerting rules into Prometheus here.

Once the alerting rules are in Prometheus, you're ready to go.

To use autometrics SLOs and alerts, create one or multiple Objectives based on the function(s) success rate and/or latency, as shown above.

The Objective can be passed as an argument to the autometrics decorator, which will include the given function in that objective.

The example above used a success rate objective. (I.e., we wanted to be alerted when the error rate started to increase.)

You can also create an objective for the latency of your functions like so:

from autometrics import autometrics from autometrics.objectives import Objective, ObjectiveLatency, ObjectivePercentile # Create an objective for low latency # - Functions with this objective should have a 99th percentile latency of less than 250ms API_SLO_LOW_LATENCY = Objective( "My API SLO for Low Latency (99th percentile < 250ms)", latency=(ObjectiveLatency.Ms250, ObjectivePercentile.P99), ) @autometrics(objective=API_SLO_LOW_LATENCY) def api_handler(): # ...

The caller Label

Autometrics keeps track of instrumented functions that call each other. So, if you have a function get_users that calls another function db.query, then the metrics for latter will include a label caller="get_users".

This allows you to drill down into the metrics for functions that are called by your instrumented functions, provided both of those functions are decorated with @autometrics.

In the example above, this means that you could investigate the latency of the database queries that get_users makes, which is rather useful.

Settings and Configuration

Autometrics makes use of a number of environment variables to configure its behavior. All of them are also configurable with keyword arguments to the init function.

  • tracker - Configure the package that autometrics will use to produce metrics. Default is opentelemetry, but you can also use prometheus. Look in pyproject.toml for the corresponding versions of packages that will be used.
  • histogram_buckets - Configure the buckets used for latency histograms. Default is [0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0].
  • enable_exemplars - Enable exemplar collection. Default is

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多