A Python port of the Rust autometrics-rs library
Metrics are a powerful and cost-efficient tool for understanding the health and performance of your code in production. But it's hard to decide what metrics to track and even harder to write queries to understand the data.
Autometrics provides a decorator that makes it trivial to instrument any function with the most useful metrics: request rate, error rate, and latency. It standardizes these metrics and then generates powerful Prometheus queries based on your function details to help you quickly identify and debug issues in production.
See Why Autometrics? for more details on the ideas behind autometrics.
@autometrics
decorator instruments any function or class method to track the
most useful metricsopentelemetry
or prometheus
)autometrics
to your project's dependencies:pip install autometrics
@autometrics
decoratorfrom autometrics import autometrics @autometrics def my_function(): # ...
init
function:from autometrics import init init(tracker="prometheus", service_name="my-service")
# This example uses FastAPI, but you can use any web framework from fastapi import FastAPI, Response from prometheus_client import generate_latest # Set up a metrics endpoint for Prometheus to scrape # `generate_latest` returns metrics data in the Prometheus text format @app.get("/metrics") def metrics(): return Response(generate_latest())
# Replace `8080` with the port that your app runs on am start :8080
autometrics-py
from autometrics import autometrics @autometrics def sayHello: return "hello"
To show tooltips over decorated functions in VSCode, with links to Prometheus queries, try installing the VSCode extension.
Note: We cannot support tooltips without a VSCode extension due to behavior of the static analyzer used in VSCode.
You can also track the number of concurrent calls to a function by using the track_concurrency
argument: @autometrics(track_concurrency=True)
.
Note: Concurrency tracking is only supported when you set with the environment variable
AUTOMETRICS_TRACKER=prometheus
.
To access the PromQL queries for your decorated functions, run help(yourfunction)
or print(yourfunction.__doc__)
.
For these queries to work, include a
.env
file in your project with your prometheus endpointPROMETHEUS_URL=your endpoint
. If this is not defined, the default endpoint will behttp://localhost:9090/
Autometrics provides Grafana dashboards that will work for any project instrumented with the library.
Autometrics makes it easy to add intelligent alerting to your code, in order to catch increases in the error rate or latency across multiple functions.
from autometrics import autometrics from autometrics.objectives import Objective, ObjectiveLatency, ObjectivePercentile # Create an objective for a high success rate # Here, we want our API to have a success rate of 99.9% API_SLO_HIGH_SUCCESS = Objective( "My API SLO for High Success Rate (99.9%)", success_rate=ObjectivePercentile.P99_9, ) @autometrics(objective=API_SLO_HIGH_SUCCESS) def api_handler(): # ...
The library uses the concept of Service-Level Objectives (SLOs) to define the acceptable error rate and latency for groups of functions. Alerts will fire depending on the SLOs you set.
Not sure what SLOs are? Check out our docs for an introduction.
In order to receive alerts, you need to add a special set of rules to your Prometheus setup. These are configured automatically when you use the Autometrics CLI to run Prometheus.
Already running Prometheus yourself? Read about how to load the autometrics alerting rules into Prometheus here.
Once the alerting rules are in Prometheus, you're ready to go.
To use autometrics SLOs and alerts, create one or multiple Objective
s based on the function(s) success rate and/or latency, as shown above.
The Objective
can be passed as an argument to the autometrics
decorator, which will include the given function in that objective.
The example above used a success rate objective. (I.e., we wanted to be alerted when the error rate started to increase.)
You can also create an objective for the latency of your functions like so:
from autometrics import autometrics from autometrics.objectives import Objective, ObjectiveLatency, ObjectivePercentile # Create an objective for low latency # - Functions with this objective should have a 99th percentile latency of less than 250ms API_SLO_LOW_LATENCY = Objective( "My API SLO for Low Latency (99th percentile < 250ms)", latency=(ObjectiveLatency.Ms250, ObjectivePercentile.P99), ) @autometrics(objective=API_SLO_LOW_LATENCY) def api_handler(): # ...
caller
LabelAutometrics keeps track of instrumented functions that call each other. So, if you have a function get_users
that calls another function db.query
, then the metrics for latter will include a label caller="get_users"
.
This allows you to drill down into the metrics for functions that are called by your instrumented functions, provided both of those functions are decorated with @autometrics
.
In the example above, this means that you could investigate the latency of the database queries that get_users
makes, which is rather useful.
Autometrics makes use of a number of environment variables to configure its behavior. All of them are also configurable with keyword arguments to the init
function.
tracker
- Configure the package that autometrics will use to produce metrics. Default is opentelemetry
, but you can also use prometheus
. Look in pyproject.toml
for the corresponding versions of packages that will be used.histogram_buckets
- Configure the buckets used for latency histograms. Default is [0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0]
.enable_exemplars
- Enable exemplar collection. Default is一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域 的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号