A Python port of the Rust autometrics-rs library
Metrics are a powerful and cost-efficient tool for understanding the health and performance of your code in production. But it's hard to decide what metrics to track and even harder to write queries to understand the data.
Autometrics provides a decorator that makes it trivial to instrument any function with the most useful metrics: request rate, error rate, and latency. It standardizes these metrics and then generates powerful Prometheus queries based on your function details to help you quickly identify and debug issues in production.
See Why Autometrics? for more details on the ideas behind autometrics.
@autometrics
decorator instruments any function or class method to track the
most useful metricsopentelemetry
or prometheus
)autometrics
to your project's dependencies:pip install autometrics
@autometrics
decoratorfrom autometrics import autometrics @autometrics def my_function(): # ...
init
function:from autometrics import init init(tracker="prometheus", service_name="my-service")
# This example uses FastAPI, but you can use any web framework from fastapi import FastAPI, Response from prometheus_client import generate_latest # Set up a metrics endpoint for Prometheus to scrape # `generate_latest` returns metrics data in the Prometheus text format @app.get("/metrics") def metrics(): return Response(generate_latest())
# Replace `8080` with the port that your app runs on am start :8080
autometrics-py
from autometrics import autometrics @autometrics def sayHello: return "hello"
To show tooltips over decorated functions in VSCode, with links to Prometheus queries, try installing the VSCode extension.
Note: We cannot support tooltips without a VSCode extension due to behavior of the static analyzer used in VSCode.
You can also track the number of concurrent calls to a function by using the track_concurrency
argument: @autometrics(track_concurrency=True)
.
Note: Concurrency tracking is only supported when you set with the environment variable
AUTOMETRICS_TRACKER=prometheus
.
To access the PromQL queries for your decorated functions, run help(yourfunction)
or print(yourfunction.__doc__)
.
For these queries to work, include a
.env
file in your project with your prometheus endpointPROMETHEUS_URL=your endpoint
. If this is not defined, the default endpoint will behttp://localhost:9090/
Autometrics provides Grafana dashboards that will work for any project instrumented with the library.
Autometrics makes it easy to add intelligent alerting to your code, in order to catch increases in the error rate or latency across multiple functions.
from autometrics import autometrics from autometrics.objectives import Objective, ObjectiveLatency, ObjectivePercentile # Create an objective for a high success rate # Here, we want our API to have a success rate of 99.9% API_SLO_HIGH_SUCCESS = Objective( "My API SLO for High Success Rate (99.9%)", success_rate=ObjectivePercentile.P99_9, ) @autometrics(objective=API_SLO_HIGH_SUCCESS) def api_handler(): # ...
The library uses the concept of Service-Level Objectives (SLOs) to define the acceptable error rate and latency for groups of functions. Alerts will fire depending on the SLOs you set.
Not sure what SLOs are? Check out our docs for an introduction.
In order to receive alerts, you need to add a special set of rules to your Prometheus setup. These are configured automatically when you use the Autometrics CLI to run Prometheus.
Already running Prometheus yourself? Read about how to load the autometrics alerting rules into Prometheus here.
Once the alerting rules are in Prometheus, you're ready to go.
To use autometrics SLOs and alerts, create one or multiple Objective
s based on the function(s) success rate and/or latency, as shown above.
The Objective
can be passed as an argument to the autometrics
decorator, which will include the given function in that objective.
The example above used a success rate objective. (I.e., we wanted to be alerted when the error rate started to increase.)
You can also create an objective for the latency of your functions like so:
from autometrics import autometrics from autometrics.objectives import Objective, ObjectiveLatency, ObjectivePercentile # Create an objective for low latency # - Functions with this objective should have a 99th percentile latency of less than 250ms API_SLO_LOW_LATENCY = Objective( "My API SLO for Low Latency (99th percentile < 250ms)", latency=(ObjectiveLatency.Ms250, ObjectivePercentile.P99), ) @autometrics(objective=API_SLO_LOW_LATENCY) def api_handler(): # ...
caller
LabelAutometrics keeps track of instrumented functions that call each other. So, if you have a function get_users
that calls another function db.query
, then the metrics for latter will include a label caller="get_users"
.
This allows you to drill down into the metrics for functions that are called by your instrumented functions, provided both of those functions are decorated with @autometrics
.
In the example above, this means that you could investigate the latency of the database queries that get_users
makes, which is rather useful.
Autometrics makes use of a number of environment variables to configure its behavior. All of them are also configurable with keyword arguments to the init
function.
tracker
- Configure the package that autometrics will use to produce metrics. Default is opentelemetry
, but you can also use prometheus
. Look in pyproject.toml
for the corresponding versions of packages that will be used.histogram_buckets
- Configure the buckets used for latency histograms. Default is [0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0]
.enable_exemplars
- Enable exemplar collection. Default is字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使 用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号