Awesome-Controllable-Generation

Awesome-Controllable-Generation

可控生成技术前沿 ControlNet到DreamBooth及最新进展

该项目收集了扩散模型中可控生成的前沿论文和资源,涵盖ControlNet、DreamBooth等开创性工作及图像、视频、3D生成的最新应用。内容包括精细合成控制、主题驱动生成和复杂布局操作等技术,汇集80余篇精选论文,全面覆盖可控生成领域的多种技术和应用,为相关研究者提供重要参考。

可控生成扩散模型文本到图像人工智能深度学习Github开源项目

<a name="readme-top"></a>

<div align="center"> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/stargazers"><img src="https://img.shields.io/github/stars/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="Stargazers"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/network/members"><img src="https://img.shields.io/github/forks/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="Forks"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/graphs/contributors"><img src="https://img.shields.io/github/contributors/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="Contributors"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/blob/main/README.md"><img src="https://img.shields.io/badge/Papers-80-80?style=for-the-badge" alt="Papers"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/blob/main/LICENSE"><img src="https://img.shields.io/github/license/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="MIT License"></a> </div> <h1 align="center">Awesome Controllable Generation</h1> <p align="center"> <b> Papers and Resources on Adding Conditional Controls to Diffusion Models in the Era of AIGC.</b> </p> <p align="center"> Dive into the cutting-edge of controllable generation in diffusion models, a field revolutionized by pioneering works like ControlNet <a href=https://arxiv.org/abs/2302.05543>[1]</a> and DreamBooth <a href=https://arxiv.org/abs/2302.05543>[2]</a>. This repository is invaluable for those interested in advanced techniques for fine-grained synthesis control, ranging from subject-driven generation to intricate layout manipulations. While ControlNet and DreamBooth are key highlights, the collection spans a broader spectrum, including recent advancements and applications in image, video, and 3D generation. </p> <details> <summary>🗂️ Table of Contents</summary> <ol> <li><a href="#papers">📝 Papers</a> <ul> <li><a href="#diffusion-models">Diffusion Models</a></li> </ul> </li> <li><a href="#other-resources">🔗 Other Resources</a></li> <li><a href="#other-awesome-lists">🌟 Other Awesome Lists</a></li> <li><a href="#contributing">✍️ Contributing</a></li> </ol> </details>

📝 Papers

  1. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation.

    Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, Kfir Aberman. CVPR'23. 🔥

    <img src="assets/dreambooth.png" style="width:100%">
  2. Adding Conditional Control to Text-to-Image Diffusion Models.

    Lvmin Zhang, Anyi Rao, Maneesh Agrawala. ICCV'23. 🔥

    <img src="assets/controlnet.png" style="width:100%">
  3. T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models.

    Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie. Preprint 2023. 🔥

    <img src="assets/t2i-adapter.png" style="width:100%">
  4. Subject-driven Text-to-Image Generation via Apprenticeship Learning.

    Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui Jia, Ming-Wei Chang, William W. Cohen. NeurIPS'23.

  5. InstantBooth: Personalized Text-to-Image Generation without Test-Time Finetuning.

    Jing Shi, Wei Xiong, Zhe Lin, Hyun Joon Jung. Preprint 2023.

  6. BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing

    Dongxu Li, Junnan Li, Steven C.H. Hoi. NeurIPS'23. 🔥

    <img src="assets/blip-diffusion.png" style="width:100%">
  7. ControlVideo: Conditional Control for One-shot Text-driven Video Editing and Beyond.

    Min Zhao, Rongzhen Wang, Fan Bao, Chongxuan Li, Jun Zhu. Preprint 2023.

  8. StyleDrop: Text-to-Image Generation in Any Style.

    Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, Yuan Hao, Irfan Essa, Michael Rubinstein, Dilip Krishnan. NeurIPS'23. 🔥

    <img src="assets/styledrop.png" style="width:100%">
  9. Face0: Instantaneously Conditioning a Text-to-Image Model on a Face.

    Dani Valevski, Danny Wasserman, Yossi Matias, Yaniv Leviathan. SIGGRAPH Asia'23.

  10. Controlling Text-to-Image Diffusion by Orthogonal Finetuning.

    Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, Bernhard Schölkopf. NeruIPS'23.

  11. Zero-shot spatial layout conditioning for text-to-image diffusion models.

    Guillaume Couairon, Marlène Careil, Matthieu Cord, Stéphane Lathuilière, Jakob Verbeek. ICCV'23.

  12. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models.

    Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, Wei Yang. Preprint 2023. 🔥

    <img src="assets/ip-adapter.png" style="width:100%">
  13. StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation.

    Zhouxia Wang, Xintao Wang, Liangbin Xie, Zhongang Qi, Ying Shan, Wenping Wang, Ping Luo. Preprint 2023.

  14. DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models.

    Namhyuk Ahn, Junsoo Lee, Chunggi Lee, Kunhee Kim, Daesik Kim, Seung-Hun Nam, Kibeom Hong. AAAI 2023.

  15. Kosmos-G: Generating Images in Context with Multimodal Large Language Models

    Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng, Wenhu Chen, Furu Wei. Preprint 2023. 🔥

    <img src="assets/kosmos-g.png" style="width:100%">
  16. An Image is Worth Multiple Words: Learning Object Level Concepts using Multi-Concept Prompt Learning.

    Chen Jin, Ryutaro Tanno, Amrutha Saseendran, Tom Diethe, Philip Teare. Preprint 2023.

  17. CustomNet: Zero-shot Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models.

    Ziyang Yuan, Mingdeng Cao, Xintao Wang, Zhongang Qi, Chun Yuan, Ying Shan. Preprint 2023.

  18. Cross-Image Attention for Zero-Shot Appearance Transfer.

    Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-Elor, Daniel Cohen-Or. Preprint 2023.

  19. The Chosen One: Consistent Characters in Text-to-Image Diffusion Models.

    Omri Avrahami, Amir Hertz, Yael Vinker, Moab Arar, Shlomi Fruchter, Ohad Fried, Daniel Cohen-Or, Dani Lischinski. Preprint 2023.

  20. MagicDance: Realistic Human Dance Video Generation with Motions & Facial Expressions Transfer.

    Di Chang, Yichun Shi, Quankai Gao, Jessica Fu, Hongyi Xu, Guoxian Song, Qing Yan, Xiao Yang, Mohammad Soleymani. Preprint 2023.

  21. ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs.

    Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, Varun Jampani. Preprint 2023.

  22. StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter.

    Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Xintao Wang, Yujiu Yang, Ying Shan. Preprint 2023.

  23. Style Aligned Image Generation via Shared Attention.

    Amir Hertz, Andrey Voynov, Shlomi Fruchter, Daniel Cohen-Or. Preprint 2023. 🔥

    <img src="assets/style-aligned.png" style="width:100%">
  24. FaceStudio: Put Your Face Everywhere in Seconds.

    Yuxuan Yan, Chi Zhang, Rui Wang, Yichao Zhou, Gege Zhang, Pei Cheng, Gang Yu, Bin Fu. Preprint 2023.

  25. Context Diffusion: In-Context Aware Image Generation.

    Ivona Najdenkoska, Animesh Sinha, Abhimanyu Dubey, Dhruv Mahajan, Vignesh Ramanathan, Filip Radenovic. Preprint 2023.

  26. PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding.

    Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, Ying Shan. Preprint 2023. 🔥

    <img src="assets/photomaker.png" style="width:100%">
  27. SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing.

    *Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多