Awesome-Controllable-Generation

Awesome-Controllable-Generation

可控生成技术前沿 ControlNet到DreamBooth及最新进展

该项目收集了扩散模型中可控生成的前沿论文和资源,涵盖ControlNet、DreamBooth等开创性工作及图像、视频、3D生成的最新应用。内容包括精细合成控制、主题驱动生成和复杂布局操作等技术,汇集80余篇精选论文,全面覆盖可控生成领域的多种技术和应用,为相关研究者提供重要参考。

可控生成扩散模型文本到图像人工智能深度学习Github开源项目

<a name="readme-top"></a>

<div align="center"> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/stargazers"><img src="https://img.shields.io/github/stars/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="Stargazers"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/network/members"><img src="https://img.shields.io/github/forks/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="Forks"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/graphs/contributors"><img src="https://img.shields.io/github/contributors/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="Contributors"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/blob/main/README.md"><img src="https://img.shields.io/badge/Papers-80-80?style=for-the-badge" alt="Papers"></a> <a href="https://github.com/atfortes/Awesome-Controllable-Generation/blob/main/LICENSE"><img src="https://img.shields.io/github/license/atfortes/Awesome-Controllable-Generation?style=for-the-badge" alt="MIT License"></a> </div> <h1 align="center">Awesome Controllable Generation</h1> <p align="center"> <b> Papers and Resources on Adding Conditional Controls to Diffusion Models in the Era of AIGC.</b> </p> <p align="center"> Dive into the cutting-edge of controllable generation in diffusion models, a field revolutionized by pioneering works like ControlNet <a href=https://arxiv.org/abs/2302.05543>[1]</a> and DreamBooth <a href=https://arxiv.org/abs/2302.05543>[2]</a>. This repository is invaluable for those interested in advanced techniques for fine-grained synthesis control, ranging from subject-driven generation to intricate layout manipulations. While ControlNet and DreamBooth are key highlights, the collection spans a broader spectrum, including recent advancements and applications in image, video, and 3D generation. </p> <details> <summary>🗂️ Table of Contents</summary> <ol> <li><a href="#papers">📝 Papers</a> <ul> <li><a href="#diffusion-models">Diffusion Models</a></li> </ul> </li> <li><a href="#other-resources">🔗 Other Resources</a></li> <li><a href="#other-awesome-lists">🌟 Other Awesome Lists</a></li> <li><a href="#contributing">✍️ Contributing</a></li> </ol> </details>

📝 Papers

  1. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation.

    Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, Kfir Aberman. CVPR'23. 🔥

    <img src="assets/dreambooth.png" style="width:100%">
  2. Adding Conditional Control to Text-to-Image Diffusion Models.

    Lvmin Zhang, Anyi Rao, Maneesh Agrawala. ICCV'23. 🔥

    <img src="assets/controlnet.png" style="width:100%">
  3. T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models.

    Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie. Preprint 2023. 🔥

    <img src="assets/t2i-adapter.png" style="width:100%">
  4. Subject-driven Text-to-Image Generation via Apprenticeship Learning.

    Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui Jia, Ming-Wei Chang, William W. Cohen. NeurIPS'23.

  5. InstantBooth: Personalized Text-to-Image Generation without Test-Time Finetuning.

    Jing Shi, Wei Xiong, Zhe Lin, Hyun Joon Jung. Preprint 2023.

  6. BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing

    Dongxu Li, Junnan Li, Steven C.H. Hoi. NeurIPS'23. 🔥

    <img src="assets/blip-diffusion.png" style="width:100%">
  7. ControlVideo: Conditional Control for One-shot Text-driven Video Editing and Beyond.

    Min Zhao, Rongzhen Wang, Fan Bao, Chongxuan Li, Jun Zhu. Preprint 2023.

  8. StyleDrop: Text-to-Image Generation in Any Style.

    Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, Yuan Hao, Irfan Essa, Michael Rubinstein, Dilip Krishnan. NeurIPS'23. 🔥

    <img src="assets/styledrop.png" style="width:100%">
  9. Face0: Instantaneously Conditioning a Text-to-Image Model on a Face.

    Dani Valevski, Danny Wasserman, Yossi Matias, Yaniv Leviathan. SIGGRAPH Asia'23.

  10. Controlling Text-to-Image Diffusion by Orthogonal Finetuning.

    Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, Bernhard Schölkopf. NeruIPS'23.

  11. Zero-shot spatial layout conditioning for text-to-image diffusion models.

    Guillaume Couairon, Marlène Careil, Matthieu Cord, Stéphane Lathuilière, Jakob Verbeek. ICCV'23.

  12. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models.

    Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, Wei Yang. Preprint 2023. 🔥

    <img src="assets/ip-adapter.png" style="width:100%">
  13. StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation.

    Zhouxia Wang, Xintao Wang, Liangbin Xie, Zhongang Qi, Ying Shan, Wenping Wang, Ping Luo. Preprint 2023.

  14. DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models.

    Namhyuk Ahn, Junsoo Lee, Chunggi Lee, Kunhee Kim, Daesik Kim, Seung-Hun Nam, Kibeom Hong. AAAI 2023.

  15. Kosmos-G: Generating Images in Context with Multimodal Large Language Models

    Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng, Wenhu Chen, Furu Wei. Preprint 2023. 🔥

    <img src="assets/kosmos-g.png" style="width:100%">
  16. An Image is Worth Multiple Words: Learning Object Level Concepts using Multi-Concept Prompt Learning.

    Chen Jin, Ryutaro Tanno, Amrutha Saseendran, Tom Diethe, Philip Teare. Preprint 2023.

  17. CustomNet: Zero-shot Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models.

    Ziyang Yuan, Mingdeng Cao, Xintao Wang, Zhongang Qi, Chun Yuan, Ying Shan. Preprint 2023.

  18. Cross-Image Attention for Zero-Shot Appearance Transfer.

    Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-Elor, Daniel Cohen-Or. Preprint 2023.

  19. The Chosen One: Consistent Characters in Text-to-Image Diffusion Models.

    Omri Avrahami, Amir Hertz, Yael Vinker, Moab Arar, Shlomi Fruchter, Ohad Fried, Daniel Cohen-Or, Dani Lischinski. Preprint 2023.

  20. MagicDance: Realistic Human Dance Video Generation with Motions & Facial Expressions Transfer.

    Di Chang, Yichun Shi, Quankai Gao, Jessica Fu, Hongyi Xu, Guoxian Song, Qing Yan, Xiao Yang, Mohammad Soleymani. Preprint 2023.

  21. ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs.

    Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, Varun Jampani. Preprint 2023.

  22. StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter.

    Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Xintao Wang, Yujiu Yang, Ying Shan. Preprint 2023.

  23. Style Aligned Image Generation via Shared Attention.

    Amir Hertz, Andrey Voynov, Shlomi Fruchter, Daniel Cohen-Or. Preprint 2023. 🔥

    <img src="assets/style-aligned.png" style="width:100%">
  24. FaceStudio: Put Your Face Everywhere in Seconds.

    Yuxuan Yan, Chi Zhang, Rui Wang, Yichao Zhou, Gege Zhang, Pei Cheng, Gang Yu, Bin Fu. Preprint 2023.

  25. Context Diffusion: In-Context Aware Image Generation.

    Ivona Najdenkoska, Animesh Sinha, Abhimanyu Dubey, Dhruv Mahajan, Vignesh Ramanathan, Filip Radenovic. Preprint 2023.

  26. PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding.

    Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, Ying Shan. Preprint 2023. 🔥

    <img src="assets/photomaker.png" style="width:100%">
  27. SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing.

    *Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多