Google-Images-Search

Google-Images-Search

Python库实现Google图片搜索、下载和处理

Google-Images-Search是一个Python库,用于搜索、下载和处理Google图片。该项目提供命令行界面和编程接口,支持自定义搜索参数、图片验证和自定义文件命名。它可以处理大量图片请求,支持将图片保存为BytesIO对象,为开发者提供了图片处理解决方案。

Google Images SearchAPIPython图片搜索开发工具Github开源项目

Google Images Search

Google Images Search

PyPI version Codacy Badge

GitHub issues GitHub closed issues GitHub closed pull requests

PyPI - Python Version GitHub GitHub last commit

Installation

To be able to use this library, you need to enable Google Custom Search API, generate API key credentials and set a project:

After setting up your Google developers account and project you should have been provided with developers API key and project CX.

Install package from pypi.org:

> pip install Google-Images-Search

CLI usage

# without environment variables: > gimages -k __your_dev_api_key__ -c __your_project_cx__ search -q puppies
# with environment variables: > export GCS_DEVELOPER_KEY=__your_dev_api_key__ > export GCS_CX=__your_project_cx__ > > gimages search -q puppies
# search only (no download and resize): > gimages search -q puppies
# search and download only (no resize): > gimages search -q puppies -d /path/on/your/drive/where/images/should/be/downloaded
# search, download and resize: > gimages search -q puppies -d /path/ -w 500 -h 500

Programmatic usage

from google_images_search import GoogleImagesSearch # you can provide API key and CX using arguments, # or you can set environment variables: GCS_DEVELOPER_KEY, GCS_CX gis = GoogleImagesSearch('your_dev_api_key', 'your_project_cx') # define search params # option for commonly used search param are shown below for easy reference. # For param marked with '##': # - Multiselect is currently not feasible. Choose ONE option only # - This param can also be omitted from _search_params if you do not wish to define any value _search_params = { 'q': '...', 'num': 10, 'fileType': 'jpg|gif|png', 'rights': 'cc_publicdomain|cc_attribute|cc_sharealike|cc_noncommercial|cc_nonderived', 'safe': 'active|high|medium|off|safeUndefined', ## 'imgType': 'clipart|face|lineart|stock|photo|animated|imgTypeUndefined', ## 'imgSize': 'huge|icon|large|medium|small|xlarge|xxlarge|imgSizeUndefined', ## 'imgDominantColor': 'black|blue|brown|gray|green|orange|pink|purple|red|teal|white|yellow|imgDominantColorUndefined', ## 'imgColorType': 'color|gray|mono|trans|imgColorTypeUndefined' ## } # this will only search for images: gis.search(search_params=_search_params) # this will search and download: gis.search(search_params=_search_params, path_to_dir='/path/') # this will search, download and resize: gis.search(search_params=_search_params, path_to_dir='/path/', width=500, height=500) # search first, then download and resize afterwards: gis.search(search_params=_search_params) for image in gis.results(): image.url # image direct url image.referrer_url # image referrer url (source) image.download('/path/') # download image image.resize(500, 500) # resize downloaded image image.path # downloaded local file path

Custom file name

Sometimes you would want to save images with file name of your choice.

from google_images_search import GoogleImagesSearch gis = GoogleImagesSearch('your_dev_api_key', 'your_project_cx') _search_params = { ... } gis.search(search_params=_search_params, path_to_dir='...', custom_image_name='my_image')

Paging

Google's API limit is 10 images per request.
That means if you want 123 images, it will be divided internally into 13 requests.
Keep in mind that getting 123 images will take a bit more time if the image validation is enabled.

from google_images_search import GoogleImagesSearch gis = GoogleImagesSearch('your_dev_api_key', 'your_project_cx') _search_params = { 'q': '...', 'num': 123, } # get first 123 images: gis.search(search_params=_search_params) # take next 123 images from Google images search: gis.next_page() for image in gis.results(): ...

Image validation

Every image URL is validated by default.
That means that every image URL will be checked if the headers can be fetched and validated.
With that you don't need to wary about which image URL is actually downloadable or not.
The downside is the time needed to validate.
If you prefer, you can turn it off.

from google_images_search import GoogleImagesSearch # turn the validation off with "validate_images" agrument gis = GoogleImagesSearch('your_dev_api_key', 'your_project_cx', validate_images=False)

Inserting custom progressbar function

By default, progressbar is not enabled.
Only in CLI progressbar is enabled by default using Curses library.
In a programmatic mode it can be enabled in two ways:

  • using contextual mode (Curses)
  • using your custom progressbar function
from google_images_search import GoogleImagesSearch # using your custom progressbar function def my_progressbar(url, progress): print(url + ' ' + progress + '%') gis = GoogleImagesSearch( 'your_dev_api_key', 'your_project_cx', progressbar_fn=my_progressbar ) _search_params = {...} gis.search(search_params=_search_params) # using contextual mode (Curses) with GoogleImagesSearch('your_dev_api_key', 'your_project_cx') as gis: _search_params = {...} gis.search(search_params=_search_params) ...

Saving to a BytesIO object

from google_images_search import GoogleImagesSearch from io import BytesIO from PIL import Image # in this case we're using PIL to keep the BytesIO as an image object # that way we don't have to wait for disk save / write times # the image is simply kept in memory # this example should display 3 pictures of puppies! gis = GoogleImagesSearch('your_dev_api_key', 'your_project_cx') my_bytes_io = BytesIO() gis.search({'q': 'puppies', 'num': 3}) for image in gis.results(): # here we tell the BytesIO object to go back to address 0 my_bytes_io.seek(0) # take raw image data raw_image_data = image.get_raw_data() # this function writes the raw image data to the object image.copy_to(my_bytes_io, raw_image_data) # or without the raw data which will be automatically taken # inside the copy_to() method image.copy_to(my_bytes_io) # we go back to address 0 again so PIL can read it from start to finish my_bytes_io.seek(0) # create a temporary image object temp_img = Image.open(my_bytes_io) # show it in the default system photo viewer temp_img.show()

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多