高效语言模型OpenELM助力开放研究
OpenELM项目推出了一系列高效的语言模型,通过层级缩放策略提升了准确性。项目提供完整架构,从数据准备到模型评估,并提供270M到3B参数的多个模型版本。预训练数据集涵盖RefinedWeb等,约1.8万亿词块,支持在HuggingFace Hub使用。OpenELM通过创新的参数分配和多样数据集,助力研究人员在自然语言处理领域取得进展。
OpenELM 是一种高效的开放语言模型家族,由多位研究人员共同开发。该项目利用层级缩放策略有效分配 Transformer 模型中每层的参数,从而提升模型的准确性。OpenELM 的预训练是基于 CoreNet 库。项目团队不仅发布了预训练模型,还推出了经过指令微调的多个参数模型,它们的参数量分别为 270M、450M、1.1B 和 3B。此外,项目还包含完整的框架支持,涵盖数据准备、训练、微调和评估过程,并提供多种预训练检查点和训练日志,以促进开放研究。
预训练数据集包括 RefinedWeb、去重后的 PILE、RedPajama 的一个子集和 Dolma v1.6 的一个子集,总计约 1.8 万亿个 token。在使用这些数据集前,请仔细查看其许可协议及相关条款。
该项目在 generate_openelm.py
文件中提供了一个示例函数,用于通过 Hugging Face Hub 加载 OpenELM 模型并生成输出。用户可以通过以下命令尝试模型:
python generate_openelm.py --model apple/OpenELM-3B-Instruct --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2
在使用命令前,用户需要获取 Hugging Face 的访问令牌。可以通过 generate_kwargs
参数传递额外的生成选项,比如通过 prompt_lookup_num_tokens
参数加速推理过程。
OpenELM 在多个数据集上进行评估,其中模型在零次学习 (Zero-Shot)、LLM360 和 OpenLLM Leaderboard 中表现出色。这些模型在 HellaSwag、ARC 系列和 WinoGrande 等任务上表现良好。
为了评估 OpenELM 的性能,首先需要安装依赖库,包括 EleutherAI 的 lm-evaluation-harness 和 Hugging Face 的 datasets、tokenizers、transformers 等相关工具。然后,通过几个命令运行不同 shot 数的各种任务,具体包括 zero-shot、five-shot 和 ten-shot 等不同设置。
OpenELM 的发布旨在为开放研究社区提供最新的语言模型技术支持。尽管这些模型基于公开数据集进行训练,并免费提供给用户使用,但并不具备安全保证。因此,模型可能会在回应用户时生成不准确、具误导性、有偏见或不合适的内容。因此,用户和开发者必须进行彻底的安全测试,并根据其特定需求实施合适的过滤机制。
如果您认为我们的工作有用,请引用:
@article{mehtaOpenELMEfficientLanguage2024, title = {{OpenELM}: {An} {Efficient} {Language} {Model} {Family} with {Open} {Training} and {Inference} {Framework}}, shorttitle = {{OpenELM}}, url = {https://arxiv.org/abs/2404.14619v1}, language = {en}, urldate = {2024-04-24}, journal = {arXiv.org}, author = {Mehta, Sachin and Sekhavat, Mohammad Hossein and Cao, Qingqing and Horton, Maxwell and Jin, Yanzi and Sun, Chenfan and Mirzadeh, Iman and Najibi, Mahyar and Belenko, Dmitry and Zatloukal, Peter and Rastegari, Mohammad}, month = apr, year = {2024}, } @inproceedings{mehta2022cvnets, author = {Mehta, Sachin and Abdolhosseini, Farzad and Rastegari, Mohammad}, title = {CVNets: High Performance Library for Computer Vision}, year = {2022}, booktitle = {Proceedings of the 30th ACM International Conference on Multimedia}, series = {MM '22} }
通过这一项目,研究人员和开发者可以更好地理解和应用先进的语言模型技术,同时为各自的研究与应用开发提供了重要支持和参考。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号