Not another Node.js Docker Remote API module.
dockerode
objectives:
dockerode
does NOT break any stream, it passes them to you allowing for some stream voodoo.dockerode
allow you to seamless run commands in a container ala docker run
.dockerode
really aims to have a good test set, allowing to follow Docker
changes easily, quickly and painlessly.Docker
Remote API features implemented and tested.npm install dockerode
To use dockerode
first you need to instantiate it:
var Docker = require('dockerode'); var docker = new Docker({socketPath: '/var/run/docker.sock'}); var docker1 = new Docker(); //defaults to above if env variables are not used var docker2 = new Docker({host: 'http://192.168.1.10', port: 3000}); var docker3 = new Docker({protocol:'http', host: '127.0.0.1', port: 3000}); var docker4 = new Docker({host: '127.0.0.1', port: 3000}); //defaults to http //protocol http vs https is automatically detected var docker5 = new Docker({ host: '192.168.1.10', port: process.env.DOCKER_PORT || 2375, ca: fs.readFileSync('ca.pem'), cert: fs.readFileSync('cert.pem'), key: fs.readFileSync('key.pem'), version: 'v1.25' // required when Docker >= v1.13, https://docs.docker.com/engine/api/version-history/ }); var docker6 = new Docker({ protocol: 'https', //you can enforce a protocol host: '192.168.1.10', port: process.env.DOCKER_PORT || 2375, ca: fs.readFileSync('ca.pem'), cert: fs.readFileSync('cert.pem'), key: fs.readFileSync('key.pem') }); //using a different promise library (default is the native one) var docker7 = new Docker({ Promise: require('bluebird') //... }); //...
// create a container entity. does not query API var container = docker.getContainer('71501a8ab0f8'); // query API for container info container.inspect(function (err, data) { console.log(data); }); container.start(function (err, data) { console.log(data); }); container.remove(function (err, data) { console.log(data); }); // promises are supported var auxContainer; docker.createContainer({ Image: 'ubuntu', AttachStdin: false, AttachStdout: true, AttachStderr: true, Tty: true, Cmd: ['/bin/bash', '-c', 'tail -f /var/log/dmesg'], OpenStdin: false, StdinOnce: false }).then(function(container) { auxContainer = container; return auxContainer.start(); }).then(function(data) { return auxContainer.resize({ h: process.stdout.rows, w: process.stdout.columns }); }).then(function(data) { return auxContainer.stop(); }).then(function(data) { return auxContainer.remove(); }).then(function(data) { console.log('container removed'); }).catch(function(err) { console.log(err); });
You may also specify default options for each container's operations, which will always be used for the specified container and operation.
container.defaultOptions.start.Binds = ["/tmp:/tmp:rw"];
docker.listContainers(function (err, containers) { containers.forEach(function (containerInfo) { docker.getContainer(containerInfo.Id).stop(cb); }); });
Context: provides the path to the Dockerfile. Additionaly files that are involved in the build must be explicitly mentioned in src array, since they are sent to a temp env to build. Example: file for COPY command are extracted from that temporary environment.
docker.buildImage('archive.tar', {t: imageName}, function (err, response){ //... }); docker.buildImage({ context: __dirname, src: ['Dockerfile', 'file1', 'file2'] }, {t: imageName}, function (err, response) { //... });
buildImage
returns a Promise of NodeJS stream. In case you want to find out when the build has finished, you must follow the progress of the build with the modem
instance in dockerode:
let dockerode = new Dockerode(); let stream = await dockerode.buildImage(...); await new Promise((resolve, reject) => { dockerode.modem.followProgress(stream, (err, res) => err ? reject(err) : resolve(res)); }); // Build has finished
docker.createContainer({Image: 'ubuntu', Cmd: ['/bin/bash'], name: 'ubuntu-test'}, function (err, container) { container.start(function (err, data) { //... }); }); //...
//tty:true docker.createContainer({ /*...*/ Tty: true /*...*/ }, function(err, container) { /* ... */ container.attach({stream: true, stdout: true, stderr: true}, function (err, stream) { stream.pipe(process.stdout); }); /* ... */ }); //tty:false docker.createContainer({ /*...*/ Tty: false /*...*/ }, function(err, container) { /* ... */ container.attach({stream: true, stdout: true, stderr: true}, function (err, stream) { //dockerode may demultiplex attach streams for you :) container.modem.demuxStream(stream, process.stdout, process.stderr); }); /* ... */ }); docker.createImage({fromImage: 'ubuntu'}, function (err, stream) { stream.pipe(process.stdout); }); //...
There is also support for HTTP connection hijacking, which allows for cleaner interactions with commands that work with stdin and stdout separately.
docker.createContainer({Tty: false, /*... other options */}, function(err, container) { container.start(function(err) { container.exec({Cmd: ['shasum', '-'], AttachStdin: true, AttachStdout: true}, function(err, exec) { exec.start({hijack: true, stdin: true}, function(err, stream) { // shasum can't finish until after its stdin has been closed, telling it that it has // read all the bytes it needs to sum. Without a socket upgrade, there is no way to // close the write-side of the stream without also closing the read-side! fs.createReadStream('node-v5.1.0.tgz', 'binary').pipe(stream); // Fortunately, we have a regular TCP socket now, so when the readstream finishes and closes our // stream, it is still open for reading and we will still get our results :-) docker.modem.demuxStream(stream, process.stdout, process.stderr); }); }); }); });
docker run
in dockerode
:image
- container imagecmd
- command to be executedstream
- stream(s) which will be used for execution output.create_options
- (optional) Options used for container creation. Refer to the DockerEngine ContainerCreate documentation for the possible valuesstart_options
- (optional) Options used for container start. Refer to the DockerEngine ContainerStart documentation for the possible valuescallback
- callback called when execution ends (optional, promise will be returned if not used).//callback docker.run('ubuntu', ['bash', '-c', 'uname -a'], process.stdout, function (err, data, container) { console.log(data.StatusCode); }); //promise docker.run(testImage, ['bash', '-c', 'uname -a'], process.stdout).then(function(data) { var output = data[0]; var container = data[1]; console.log(output.StatusCode); return container.remove(); }).then(function(data) { console.log('container removed'); }).catch(function(err) { console.log(err); });
or, if you want to split stdout and stderr (you must to pass Tty:false
as an option for this to work)
docker.run('ubuntu', ['bash', '-c', 'uname -a'], [process.stdout, process.stderr], {Tty:false}, function (err, data, container) { console.log(data.StatusCode); });
If you provide a callback, run
will return an EventEmitter supporting the following events: container, stream, data.
If a callback isn't provided a promise will be returned.
docker.run('ubuntu', ['bash', '-c', 'uname -a'], [process.stdout, process.stderr], {Tty:false}, function (err, data, container) { //... }).on('container', function (container) { //... });
And here is one more complex example using auto-remove and Docker network.
docker.run('some-python-image', ['python', 'main.py', arg], process.stdout, {name: 'my-python-container', HostConfig: { AutoRemove: true, NetworkMode: 'my_network'}}, function(err, data, container) { // Do stuff });
docker pull
in dockerode
:repoTag
- container image name (optionally with tag)
myrepo/myname:withtag
options
- extra options passed to create image.callback
- callback called when execution ends.docker.pull('myrepo/myname:tag', function (err, stream) { // streaming output from pull... });
docker-modem
already base64 encodes the necessary auth object for you.
var auth = { username: 'username', password: 'password', auth: '', email: 'your@email.email', serveraddress: 'https://index.docker.io/v1' }; docker.pull('tag', {'authconfig': auth}, function (err, stream) { //... });
If you already have a base64 encoded auth object, you can use it directly:
var auth = { key: 'yJ1J2ZXJhZGRyZXNzIjoitZSI6Im4OCIsImF1dGgiOiIiLCJlbWFpbCI6ImZvbGllLmFkcmc2VybmF0iLCJzZX5jb2aHR0cHM6Ly9pbmRleC5kb2NrZXIuaW8vdZvbGllYSIsInBhc3N3b3JkIjoiRGVjZW1icmUjEvIn0=' }
followProgress
- allows to fire a callback only in the end of a stream based process. (build, pull, ...)//followProgress(stream, onFinished, [onProgress]) docker.pull(repoTag, function(err, stream) { //... docker.modem.followProgress(stream, onFinished, onProgress); function onFinished(err, output) { //output is an array with output json parsed objects //... } function onProgress(event) { //... } });
demuxStream
- demux stdout and stderr//demuxStream(stream, stdout, stderr) container.attach({ stream: true, stdout: true, stderr: true }, function handler(err, stream) { //... container.modem.demuxStream(stream, process.stdout, process.stderr); //... });
Amazing entities that sponsor my open-source work. Check them out!
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号