flink

flink

开源流处理框架 实时批处理数据分析利器

Apache Flink是开源流处理框架,专注于高性能流处理和批处理。框架提供Java和Scala API,支持高吞吐低延迟的事件处理。主要特性包括事件时间处理、灵活窗口操作和exactly-once语义。Flink还集成了图计算、机器学习库,并可与Hadoop生态系统无缝对接。该框架适用于实时分析和大规模数据处理场景,为企业提供强大的数据处理能力。

Apache Flink流处理框架批处理数据流开源项目Github

Apache Flink

Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities.

Learn more about Flink at https://flink.apache.org/

Features

  • A streaming-first runtime that supports both batch processing and data streaming programs

  • Elegant and fluent APIs in Java and Scala

  • A runtime that supports very high throughput and low event latency at the same time

  • Support for event time and out-of-order processing in the DataStream API, based on the Dataflow Model

  • Flexible windowing (time, count, sessions, custom triggers) across different time semantics (event time, processing time)

  • Fault-tolerance with exactly-once processing guarantees

  • Natural back-pressure in streaming programs

  • Libraries for Graph processing (batch), Machine Learning (batch), and Complex Event Processing (streaming)

  • Built-in support for iterative programs (BSP) in the DataSet (batch) API

  • Custom memory management for efficient and robust switching between in-memory and out-of-core data processing algorithms

  • Compatibility layers for Apache Hadoop MapReduce

  • Integration with YARN, HDFS, HBase, and other components of the Apache Hadoop ecosystem

Streaming Example

case class WordWithCount(word: String, count: Long) val text = env.socketTextStream(host, port, '\n') val windowCounts = text.flatMap { w => w.split("\\s") } .map { w => WordWithCount(w, 1) } .keyBy("word") .window(TumblingProcessingTimeWindow.of(Time.seconds(5))) .sum("count") windowCounts.print()

Batch Example

case class WordWithCount(word: String, count: Long) val text = env.readTextFile(path) val counts = text.flatMap { w => w.split("\\s") } .map { w => WordWithCount(w, 1) } .groupBy("word") .sum("count") counts.writeAsCsv(outputPath)

Building Apache Flink from Source

Prerequisites for building Flink:

  • Unix-like environment (we use Linux, Mac OS X, Cygwin, WSL)
  • Git
  • Maven (we require version 3.8.6)
  • Java 8 or 11 (Java 9 or 10 may work)
git clone https://github.com/apache/flink.git
cd flink
./mvnw clean package -DskipTests # this will take up to 10 minutes

Flink is now installed in build-target.

Developing Flink

The Flink committers use IntelliJ IDEA to develop the Flink codebase. We recommend IntelliJ IDEA for developing projects that involve Scala code.

Minimal requirements for an IDE are:

  • Support for Java and Scala (also mixed projects)
  • Support for Maven with Java and Scala

IntelliJ IDEA

The IntelliJ IDE supports Maven out of the box and offers a plugin for Scala development.

Check out our Setting up IntelliJ guide for details.

Eclipse Scala IDE

NOTE: From our experience, this setup does not work with Flink due to deficiencies of the old Eclipse version bundled with Scala IDE 3.0.3 or due to version incompatibilities with the bundled Scala version in Scala IDE 4.4.1.

We recommend to use IntelliJ instead (see above)

Support

Don’t hesitate to ask!

Contact the developers and community on the mailing lists if you need any help.

Open an issue if you find a bug in Flink.

Documentation

The documentation of Apache Flink is located on the website: https://flink.apache.org or in the docs/ directory of the source code.

Fork and Contribute

This is an active open-source project. We are always open to people who want to use the system or contribute to it. Contact us if you are looking for implementation tasks that fit your skills. This article describes how to contribute to Apache Flink.

Externalized Connectors

Most Flink connectors have been externalized to individual repos under the Apache Software Foundation:

About

Apache Flink is an open source project of The Apache Software Foundation (ASF). The Apache Flink project originated from the Stratosphere research project.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多