Ubuntu + PyTorch + CUDA (optional)
In order to use this image you must have Docker Engine installed. Instructions for setting up Docker Engine are available on the Docker website.
If you have a CUDA-compatible NVIDIA graphics card, you can use a CUDA-enabled version of the PyTorch image to enable hardware acceleration. I have only tested this in Ubuntu Linux.
Firstly, ensure that you install the appropriate NVIDIA drivers. On Ubuntu,
I've found that the easiest way of ensuring that you have the right version
of the drivers set up is by installing a version of CUDA at least as new as
the image you intend to use via
the official NVIDIA CUDA download page.
As an example, if you intend on using the cuda-10.1
image then setting up
CUDA 10.1 or CUDA 10.2 should ensure that you have the correct graphics drivers.
You will also need to install the NVIDIA Container Toolkit to enable GPU device access within Docker containers. This can be found at NVIDIA/nvidia-docker.
Prebuilt images are available on Docker Hub under the name anibali/pytorch.
For example, you can pull an image with PyTorch 2.0.1 and CUDA 11.8 using:
$ docker pull anibali/pytorch:2.0.1-cuda11.8
It is possible to run PyTorch programs inside a container using the
python3
command. For example, if you are within a directory containing
some PyTorch project with entrypoint main.py
, you could run it with
the following command:
docker run --rm -it --init \ --gpus=all \ --ipc=host \ --user="$(id -u):$(id -g)" \ --volume="$PWD:/app" \ anibali/pytorch python3 main.py
Here's a description of the Docker command-line options shown above:
--gpus=all
: Required if using CUDA, optional otherwise. Passes the
graphics cards from the host to the container. You can also more precisely
control which graphics cards are exposed using this option (see documentation
at https://github.com/NVIDIA/nvidia-docker).--ipc=host
: Required if using multiprocessing, as explained at
https://github.com/pytorch/pytorch#docker-image.--user="$(id -u):$(id -g)"
: Sets the user inside the container to match your
user and group ID. Optional, but is useful for writing files with correct
ownership.--volume="$PWD:/app"
: Mounts the current working directory into the container.
The default working directory inside the container is /app
. Optional.If you are running on a Linux host, you can get code running inside the Docker container to display graphics using the host X server (this allows you to use OpenCV's imshow, for example). Here we describe a quick-and-dirty (but INSECURE) way of doing this. For a more comprehensive guide on GUIs and Docker check out http://wiki.ros.org/docker/Tutorials/GUI.
On the host run:
sudo xhost +local:root
You can revoke these access permissions later with sudo xhost -local:root
.
Now when you run a container make sure you add the options -e "DISPLAY"
and
--volume="/tmp/.X11-unix:/tmp/.X11-unix:rw"
. This will provide the container
with your X11 socket for communication and your display ID. Here's an
example:
docker run --rm -it --init \ --gpus=all \ -e "DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" \ anibali/pytorch python3 -c "import tkinter; tkinter.Tk().mainloop()"
The recommended way of adding additional dependencies to an image is to create your own Dockerfile using one of the PyTorch images from this project as a base.
For example, let's say that you require OpenCV and wish to work with PyTorch
2.0.1. You can create your own Dockerfile using
anibali/pytorch:2.0.1-cuda11.8-ubuntu22.04
as the base image and install
OpenCV using additional build steps:
FROM anibali/pytorch:2.0.1-cuda11.8-ubuntu22.04 # Set up time zone. ENV TZ=UTC RUN sudo ln -snf /usr/share/zoneinfo/$TZ /etc/localtime # Install system libraries required by OpenCV. RUN sudo apt-get update \ && sudo apt-get install -y libgl1-mesa-glx libgtk2.0-0 libsm6 libxext6 \ && sudo rm -rf /var/lib/apt/lists/* # Install OpenCV from PyPI. RUN pip install opencv-python==4.5.1.48
The Dockerfiles in the dockerfiles/
directory are automatically generated by
the manager.py
script using details in images.yml
and the templates in
templates/
.
Here's an example workflow illustrating how to create a new Dockerfile.
templates/
if none of the existing
ones are appropriate.images.yml
(see the existing entries for examples).python manager.py
. A new directory
containing the Dockerfile will be created in dockerfiles/
.一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活 更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号