docker-pytorch

docker-pytorch

PyTorch开发环境的Docker镜像

docker-pytorch项目提供预配置的Docker镜像,整合Ubuntu、PyTorch和可选的CUDA。该镜像支持GPU加速,便于搭建深度学习环境。用户可运行PyTorch脚本和图形化应用,也可自定义镜像。这个项目为PyTorch开发者提供了便捷的环境配置方案。

PyTorchDockerCUDAGPU加速深度学习Github开源项目

PyTorch Docker image

Docker image version Docker image pulls Docker image size

Ubuntu + PyTorch + CUDA (optional)

Requirements

In order to use this image you must have Docker Engine installed. Instructions for setting up Docker Engine are available on the Docker website.

CUDA requirements

If you have a CUDA-compatible NVIDIA graphics card, you can use a CUDA-enabled version of the PyTorch image to enable hardware acceleration. I have only tested this in Ubuntu Linux.

Firstly, ensure that you install the appropriate NVIDIA drivers. On Ubuntu, I've found that the easiest way of ensuring that you have the right version of the drivers set up is by installing a version of CUDA at least as new as the image you intend to use via the official NVIDIA CUDA download page. As an example, if you intend on using the cuda-10.1 image then setting up CUDA 10.1 or CUDA 10.2 should ensure that you have the correct graphics drivers.

You will also need to install the NVIDIA Container Toolkit to enable GPU device access within Docker containers. This can be found at NVIDIA/nvidia-docker.

Prebuilt images

Prebuilt images are available on Docker Hub under the name anibali/pytorch.

For example, you can pull an image with PyTorch 2.0.1 and CUDA 11.8 using:

$ docker pull anibali/pytorch:2.0.1-cuda11.8

Usage

Running PyTorch scripts

It is possible to run PyTorch programs inside a container using the python3 command. For example, if you are within a directory containing some PyTorch project with entrypoint main.py, you could run it with the following command:

docker run --rm -it --init \ --gpus=all \ --ipc=host \ --user="$(id -u):$(id -g)" \ --volume="$PWD:/app" \ anibali/pytorch python3 main.py

Here's a description of the Docker command-line options shown above:

  • --gpus=all: Required if using CUDA, optional otherwise. Passes the graphics cards from the host to the container. You can also more precisely control which graphics cards are exposed using this option (see documentation at https://github.com/NVIDIA/nvidia-docker).
  • --ipc=host: Required if using multiprocessing, as explained at https://github.com/pytorch/pytorch#docker-image.
  • --user="$(id -u):$(id -g)": Sets the user inside the container to match your user and group ID. Optional, but is useful for writing files with correct ownership.
  • --volume="$PWD:/app": Mounts the current working directory into the container. The default working directory inside the container is /app. Optional.

Running graphical applications

If you are running on a Linux host, you can get code running inside the Docker container to display graphics using the host X server (this allows you to use OpenCV's imshow, for example). Here we describe a quick-and-dirty (but INSECURE) way of doing this. For a more comprehensive guide on GUIs and Docker check out http://wiki.ros.org/docker/Tutorials/GUI.

On the host run:

sudo xhost +local:root

You can revoke these access permissions later with sudo xhost -local:root. Now when you run a container make sure you add the options -e "DISPLAY" and --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw". This will provide the container with your X11 socket for communication and your display ID. Here's an example:

docker run --rm -it --init \ --gpus=all \ -e "DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" \ anibali/pytorch python3 -c "import tkinter; tkinter.Tk().mainloop()"

Deriving your own images

The recommended way of adding additional dependencies to an image is to create your own Dockerfile using one of the PyTorch images from this project as a base.

For example, let's say that you require OpenCV and wish to work with PyTorch 2.0.1. You can create your own Dockerfile using anibali/pytorch:2.0.1-cuda11.8-ubuntu22.04 as the base image and install OpenCV using additional build steps:

FROM anibali/pytorch:2.0.1-cuda11.8-ubuntu22.04 # Set up time zone. ENV TZ=UTC RUN sudo ln -snf /usr/share/zoneinfo/$TZ /etc/localtime # Install system libraries required by OpenCV. RUN sudo apt-get update \ && sudo apt-get install -y libgl1-mesa-glx libgtk2.0-0 libsm6 libxext6 \ && sudo rm -rf /var/lib/apt/lists/* # Install OpenCV from PyPI. RUN pip install opencv-python==4.5.1.48

Development and contributing

The Dockerfiles in the dockerfiles/ directory are automatically generated by the manager.py script using details in images.yml and the templates in templates/.

Here's an example workflow illustrating how to create a new Dockerfile.

  1. (Optional) Create a new template file in templates/ if none of the existing ones are appropriate.
  2. Create a new entry in images.yml (see the existing entries for examples).
  3. Generate the Dockerfile by running python manager.py. A new directory containing the Dockerfile will be created in dockerfiles/.
  4. Build the generated Dockerfile and test that it works. You can stop here if you are creating an image for your own use.
  5. (Optional) Submit a PR if you think that your new image might be useful for others, and it will be considered for publication.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多