pecos

pecos

用于大规模输出空间的高效机器学习框架

PECOS是一个专注于解决大规模输出空间问题的机器学习框架。它主要应用于极端多标签排序和大规模检索等任务,能在数百万候选项中快速识别和排序相关输出。该框架集成了X-Linear、XR-Transformer等算法和HNSW近似最近邻搜索技术,支持实时推理和海量数据处理。PECOS的设计灵活,可适应多种应用场景,为大规模机器学习任务提供了高效解决方案。

PECOS机器学习框架大规模输出空间极端多标签排序快速推理Github开源项目

PECOS - Predictions for Enormous and Correlated Output Spaces

PyPi Latest Release License

PECOS is a versatile and modular machine learning (ML) framework for fast learning and inference on problems with large output spaces, such as extreme multi-label ranking (XMR) and large-scale retrieval. PECOS' design is intentionally agnostic to the specific nature of the inputs and outputs as it is envisioned to be a general-purpose framework for multiple distinct applications.

Given an input, PECOS identifies a small set (10-100) of relevant outputs from amongst an extremely large (~100MM) candidate set and ranks these outputs in terms of relevance.

Features

Extreme Multi-label Ranking and Classification

  • X-Linear (pecos.xmc.xlinear): recursive linear models learning to traverse an input from the root of a hierarchical label tree to a few leaf node clusters, and return top-k relevant labels within the clusters as predictions. See more details in the PECOS paper (Yu et al., 2020).

    • fast real-time inference in C++
    • can handle 100MM output space
  • XR-Transformer (pecos.xmc.xtransformer): Transformer based XMC framework that fine-tunes pre-trained transformers recursively on multi-resolution objectives. It can be used to generate top-k relevant labels for a given instance or simply as a fine-tuning engine for task aware embeddings. See technical details in XR-Transformer paper (Zhang et al., 2021).

    • easy to extend with many pre-trained Transformer models from huggingface transformers.
    • establishes the State-of-the-art on public XMC benchmarks.
  • ANN Search with HNSW (pecos.ann.hnsw): a PECOS Approximated Nearest Neighbor (ANN) search module that implements the Hierarchical Navigable Small World Graphs (HNSW) algorithm (Malkov et al., TPAMI 2018).

    • Supports both sparse and dense input features
    • SIMD optimization for both dense/sparse distance computation
    • Supports thread-safe graph construction in parallel on multi-core shared memory machines
    • Supports thread-safe Searchers to do inference in parallel, which reduces inference overhead

Requirements and Installation

  • Python (3.8, 3.9, 3.10, 3.11)
  • Pip (>=19.3)

See other dependencies in setup.py You should install PECOS in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.

Supporting Platforms

  • Ubuntu 20.04 and 22.04
  • Amazon Linux 2

Installation from Wheel

PECOS can be installed using pip as follows:

python3 -m pip install libpecos

Installation from Source

Prerequisite builder tools

  • For Ubuntu (20.04, 22.04):
sudo apt-get update && sudo apt-get install -y build-essential git python3 python3-distutils python3-venv
  • For Amazon Linux 2:
sudo yum -y install python3 python3-devel python3-distutils python3-venv && sudo yum -y groupinstall 'Development Tools'

One needs to install at least one BLAS library to compile PECOS, e.g. OpenBLAS:

  • For Ubuntu (20.04, 22.04):
sudo apt-get install -y libopenblas-dev
  • For Amazon Linux 2:
sudo amazon-linux-extras install epel -y sudo yum install openblas-devel -y

Install and develop locally

git clone https://github.com/amzn/pecos cd pecos python3 -m pip install --editable ./

Quick Tour

To have a glimpse of how PECOS works, here is a quick tour of using PECOS API for the XMR problem.

Toy Example

The eXtreme Multi-label Ranking (XMR) problem is defined by two matrices

Some toy data matrices are available in the tst-data folder.

PECOS constructs a hierarchical label tree and learns linear models recursively (e.g., XR-Linear):

>>> from pecos.xmc.xlinear.model import XLinearModel >>> from pecos.xmc import Indexer, LabelEmbeddingFactory # Build hierarchical label tree and train a XR-Linear model >>> label_feat = LabelEmbeddingFactory.create(Y, X) >>> cluster_chain = Indexer.gen(label_feat) >>> model = XLinearModel.train(X, Y, C=cluster_chain) >>> model.save("./save-models")

After learning the model, we do prediction and evaluation

>>> from pecos.utils import smat_util >>> Yt_pred = model.predict(Xt) # print precision and recall at k=10 >>> print(smat_util.Metrics.generate(Yt, Yt_pred))

PECOS also offers optimized C++ implementation for fast real-time inference

>>> model = XLinearModel.load("./save-models", is_predict_only=True) >>> for i in range(X_tst.shape[0]): >>> y_tst_pred = model.predict(X_tst[i], threads=1)

Citation

If you find PECOS useful, please consider citing the following paper:

Some papers from PECOS team:

License

Copyright (2021) Amazon.com, Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多