<font size=7>英文| 简体中文</font>
Alink是基于Flink的通用算法平台,由阿里巴巴计算平台PAI团队研发,欢迎大家加入Alink开源用户钉钉群进行交流。
<div align=center> <img src="https://img.alicdn.com/tfs/TB1kQU0sQY2gK0jSZFgXXc5OFXa-614-554.png" height="25%" width="25%"> </div>pyalink 包对应为 Alink 所支持的最新 Flink 版本,当前为 1.13,而 pyalink-flink-*** 为旧版本的 Flink 版本,当前提供 pyalink-flink-1.12, pyalink-flink-1.11, pyalink-flink-1.10 和 pyalink-flink-1.9。1.6.2。pip install pyalink、pip install pyalink-flink-1.12、pip install pyalink-flink-1.11、pip install pyalink-flink-1.10 或者 pip install pyalink-flink-1.9。pyalink 和 pyalink-flink-*** 不能同时安装,也不能与旧版本同时安装。
如果之前安装过 pyalink 或者 pyalink-flink-***,请使用pip uninstall pyalink 或者 pip uninstall pyalink-flink-*** 卸载之前的版本。pip安装缓慢或不成功的情况,可以参考这篇文章修改pip源,或者直接使用下面的链接下载 whl 包,然后使用 pip 安装:
pip,比如 pip3;如果使用 Anaconda,则需要在 Anaconda 命令行中进行安装。可以通过 Jupyter Notebook 来开始使用 PyAlink,能获得更好的使用体验。
使用步骤:
jupyter notebook,并新建 Python 3 的 Notebook 。from pyalink.alink import *。useLocalEnv(parallism, flinkHome=None, config=None)。
其中,参数 parallism 表示执行所使用的并行度;flinkHome 为 flink 的完整路 径,一般情况不需要设置;config为Flink所接受的配置参数。运行后出现如下所示的输出,表示初始化运行环境成功:JVM listening on ***
source = CsvSourceBatchOp()\ .setSchemaStr("sepal_length double, sepal_width double, petal_length double, petal_width double, category string")\ .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/iris.csv") res = source.select(["sepal_length", "sepal_width"]) df = res.collectToDataframe() print(df)
在 PyAlink 中,算法组件提供的接口基本与 Java API 一致,即通过默认构造方法创建一个算法组件,然后通过 setXXX 设置参数,通过 link/linkTo/linkFrom 与其他组件相连。
这里利用 Jupyter Notebook 的自动补全机制可以提供书写便利。
对于批式作业,可以通过批式组件的 print/collectToDataframe/collectToDataframes 等方法或者 BatchOperator.execute() 来触发执行;对于流式作业,则通过 StreamOperator.execute() 来启动作业。
String URL = "https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/iris.csv"; String SCHEMA_STR = "sepal_length double, sepal_width double, petal_length double, petal_width double, category string"; BatchOperator data = new CsvSourceBatchOp() .setFilePath(URL) .setSchemaStr(SCHEMA_STR); VectorAssembler va = new VectorAssembler() .setSelectedCols(new String[]{"sepal_length", "sepal_width", "petal_length", "petal_width"}) .setOutputCol("features"); KMeans kMeans = new KMeans().setVectorCol("features").setK(3) .setPredictionCol("prediction_result") .setPredictionDetailCol("prediction_detail") .setReservedCols("category") .setMaxIter(100); Pipeline pipeline = new Pipeline().add(va).add(kMeans); pipeline.fit(data).transform(data).print();
<dependency> <groupId>com.alibaba.alink</groupId> <artifactId>alink_core_flink-1.13_2.11</artifactId> <version>1.6.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>1.13.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.11</artifactId> <version>1.13.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>1.13.0</version> </dependency>
<dependency> <groupId>com.alibaba.alink</groupId> <artifactId>alink_core_flink-1.12_2.11</artifactId> <version>1.6.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>1.12.1</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.11</artifactId> <version>1.12.1</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>1.12.1</version> </dependency>
<dependency> <groupId>com.alibaba.alink</groupId> <artifactId>alink_core_flink-1.11_2.11</artifactId> <version>1.6.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>1.11.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.11</artifactId> <version>1.11.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>1.11.0</version> </dependency>
<dependency> <groupId>com.alibaba.alink</groupId> <artifactId>alink_core_flink-1.10_2.11</artifactId> <version>1.6.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>1.10.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.11</artifactId> <version>1.10.0</version> </dependency>
<dependency> <groupId>com.alibaba.alink</groupId> <artifactId>alink_core_flink-1.9_2.11</artifactId> <version>1.6.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>1.9.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.11</artifactId> <version>1.9.0</version> </dependency>
wget https://archive.apache.org/dist/flink/flink-1.13.0/flink-1.13.0-bin-scala_2.11.tgz tar -xf flink-1.13.0-bin-scala_2.11.tgz && cd flink-1.13.0 ./bin/start-cluster.sh
git clone https://github.com/alibaba/Alink.git # 在alink_examples的pom.xml中添加<scope>provided</scope> cd Alink && mvn -Dmaven.test.skip=true clean package shade:shade
./bin/flink run -p 1 -c com.alibaba.alink.ALSExample [path_to_Alink]/examples/target/alink_examples-1.5-SNAPSHOT.jar # ./bin/flink run -p 1 -c com.alibaba.alink.GBDTExample [path_to_Alink]/examples/target/alink_examples-1.5-SNAPSHOT.jar # ./bin/flink run -p 1 -c com.alibaba.alink.KMeansExample [path_to_Alink]/examples/target/alink_examples-1.5-SNAPSHOT.jar