AutoSub

AutoSub

开源视频自动字幕生成工具

AutoSub是一款开源命令行工具,能够为视频自动生成多种格式的字幕文件。它集成了Mozilla DeepSpeech和Coqui STT语音识别技术,结合pyAudioAnalysis音频分析库,实现了高效的音频分割和文字转换。该工具支持多语言处理,可满足不同类型视频的字幕需求。

AutoSub字幕生成语音识别开源工具音频处理Github开源项目

AutoSub

About

AutoSub is a CLI application to generate subtitle files (.srt, .vtt, and .txt transcript) for any video file using either Mozilla DeepSpeech or Coqui STT. I use their open-source models to run inference on audio segments and pyAudioAnalysis to split the initial audio on silent segments, producing multiple smaller files (makes inference easy).

⭐ Featured in DeepSpeech Examples by Mozilla

Installation

  • Clone the repo
    $ git clone https://github.com/abhirooptalasila/AutoSub $ cd AutoSub
  • [OPTIONAL] Create a virtual environment to install the required packages. By default, AutoSub will be installed globally. All further steps should be performed while in the AutoSub/ directory
    $ python3 -m pip install --user virtualenv $ virtualenv -p python3 sub $ source sub/bin/activate
  • Use the corresponding requirements file depending on whether you have a GPU or not. If you want to install for a GPU, replace requirements.txt with requirements-gpu.txt. Make sure you have the appropriate CUDA version
    $ pip install .
  • Install FFMPEG. If you're on Ubuntu, this should work fine
    $ sudo apt-get install ffmpeg $ ffmpeg -version # I'm running 4.1.4
  • By default, if no model files are found in the root directory, the script will download v0.9.3 models for DeepSpeech or TFLITE model and Huge Vocab for Coqui. Use getmodels.sh to download DeepSpeech model and scorer files with the version number as argument. For Coqui, download from here
    $ ./getmodels.sh 0.9.3
  • For .tflite models with DeepSpeech, follow this

Docker

  • If you don't have the model files, get them
    $ ./getmodels.sh 0.9.3
  • For a CPU build
    $ docker build -t autosub . $ docker run --volume=`pwd`/input:/input --name autosub autosub --file /input/video.mp4 $ docker cp autosub:/output/ .
  • For a GPU build that is reusable (saving time on instantiating the program)
    $ docker build --build-arg BASEIMAGE=nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 --build-arg DEPSLIST=requirements-gpu.txt -t autosub-base . && \ docker run --gpus all --name autosub-base autosub-base --dry-run || \ docker commit --change 'CMD []' autosub-base autosub-instance
  • Finally
    $ docker run --volume=`pwd`/input:/input --name autosub autosub-instance --file ~/video.mp4 $ docker cp autosub:/output/ .

How-to example

  • The model files should be in the repo root directory and will be loaded/downloaded automatically. Incase you have multiple versions, use the --model and --scorer args while executing
  • By default, Coqui is used for inference. You can change this by using the --engine argument with value "ds" for DeepSpeech
  • For languages other than English, you'll need to manually download the model and scorer files. Check here for DeepSpeech and here for Coqui.
  • After following the installation instructions, you can run autosub/main.py as given below. The --file argument is the video file for which subtitles are to be generated
    $ python3 autosub/main.py --file ~/movie.mp4
  • After the script finishes, the SRT file is saved in output/
  • The optional --split-duration argument allows customization of the maximum number of seconds any given subtitle is displayed for. The default is 5 seconds
    $ python3 autosub/main.py --file ~/movie.mp4 --split-duration 8
  • By default, AutoSub outputs SRT, VTT and TXT files. To only produce the file formats you want, use the --format argument
    $ python3 autosub/main.py --file ~/movie.mp4 --format srt txt
  • Open the video file and add this SRT file as a subtitle. You can just drag and drop in VLC.

How it works

Mozilla DeepSpeech is an open-source speech-to-text engine with support for fine-tuning using custom datasets, external language models, exporting memory-mapped models and a lot more. You should definitely check it out for STT tasks. So, when you run the script, I use FFMPEG to extract the audio from the video and save it in audio/. By default DeepSpeech is configured to accept 16kHz audio samples for inference, hence while extracting I make FFMPEG use 16kHz sampling rate.

Then, I use pyAudioAnalysis for silence removal - which basically takes the large audio file initially extracted, and splits it wherever silent regions are encountered, resulting in smaller audio segments which are much easier to process. I haven't used the whole library, instead I've integrated parts of it in autosub/featureExtraction.py and autosub/trainAudio.py. All these audio files are stored in audio/. Then for each audio segment, I perform DeepSpeech inference on it, and write the inferred text in a SRT file. After all files are processed, the final SRT file is stored in output/.

When I tested the script on my laptop, it took about 40 minutes to generate the SRT file for a 70 minutes video file. My config is an i5 dual-core @ 2.5 Ghz and 8GB RAM. Ideally, the whole process shouldn't take more than 60% of the duration of original video file.

Motivation

In the age of OTT platforms, there are still some who prefer to download movies/videos from YouTube/Facebook or even torrents rather than stream. I am one of them and on one such occasion, I couldn't find the subtitle file for a particular movie I had downloaded. Then the idea for AutoSub struck me and since I had worked with DeepSpeech previously, I decided to use it.

Contributing

I would love to follow up on any suggestions/issues you find :)

References

  1. https://github.com/mozilla/DeepSpeech/
  2. https://github.com/tyiannak/pyAudioAnalysis
  3. https://deepspeech.readthedocs.io/

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多