AutoSub

AutoSub

开源视频自动字幕生成工具

AutoSub是一款开源命令行工具,能够为视频自动生成多种格式的字幕文件。它集成了Mozilla DeepSpeech和Coqui STT语音识别技术,结合pyAudioAnalysis音频分析库,实现了高效的音频分割和文字转换。该工具支持多语言处理,可满足不同类型视频的字幕需求。

AutoSub字幕生成语音识别开源工具音频处理Github开源项目

AutoSub

About

AutoSub is a CLI application to generate subtitle files (.srt, .vtt, and .txt transcript) for any video file using either Mozilla DeepSpeech or Coqui STT. I use their open-source models to run inference on audio segments and pyAudioAnalysis to split the initial audio on silent segments, producing multiple smaller files (makes inference easy).

⭐ Featured in DeepSpeech Examples by Mozilla

Installation

  • Clone the repo
    $ git clone https://github.com/abhirooptalasila/AutoSub $ cd AutoSub
  • [OPTIONAL] Create a virtual environment to install the required packages. By default, AutoSub will be installed globally. All further steps should be performed while in the AutoSub/ directory
    $ python3 -m pip install --user virtualenv $ virtualenv -p python3 sub $ source sub/bin/activate
  • Use the corresponding requirements file depending on whether you have a GPU or not. If you want to install for a GPU, replace requirements.txt with requirements-gpu.txt. Make sure you have the appropriate CUDA version
    $ pip install .
  • Install FFMPEG. If you're on Ubuntu, this should work fine
    $ sudo apt-get install ffmpeg $ ffmpeg -version # I'm running 4.1.4
  • By default, if no model files are found in the root directory, the script will download v0.9.3 models for DeepSpeech or TFLITE model and Huge Vocab for Coqui. Use getmodels.sh to download DeepSpeech model and scorer files with the version number as argument. For Coqui, download from here
    $ ./getmodels.sh 0.9.3
  • For .tflite models with DeepSpeech, follow this

Docker

  • If you don't have the model files, get them
    $ ./getmodels.sh 0.9.3
  • For a CPU build
    $ docker build -t autosub . $ docker run --volume=`pwd`/input:/input --name autosub autosub --file /input/video.mp4 $ docker cp autosub:/output/ .
  • For a GPU build that is reusable (saving time on instantiating the program)
    $ docker build --build-arg BASEIMAGE=nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 --build-arg DEPSLIST=requirements-gpu.txt -t autosub-base . && \ docker run --gpus all --name autosub-base autosub-base --dry-run || \ docker commit --change 'CMD []' autosub-base autosub-instance
  • Finally
    $ docker run --volume=`pwd`/input:/input --name autosub autosub-instance --file ~/video.mp4 $ docker cp autosub:/output/ .

How-to example

  • The model files should be in the repo root directory and will be loaded/downloaded automatically. Incase you have multiple versions, use the --model and --scorer args while executing
  • By default, Coqui is used for inference. You can change this by using the --engine argument with value "ds" for DeepSpeech
  • For languages other than English, you'll need to manually download the model and scorer files. Check here for DeepSpeech and here for Coqui.
  • After following the installation instructions, you can run autosub/main.py as given below. The --file argument is the video file for which subtitles are to be generated
    $ python3 autosub/main.py --file ~/movie.mp4
  • After the script finishes, the SRT file is saved in output/
  • The optional --split-duration argument allows customization of the maximum number of seconds any given subtitle is displayed for. The default is 5 seconds
    $ python3 autosub/main.py --file ~/movie.mp4 --split-duration 8
  • By default, AutoSub outputs SRT, VTT and TXT files. To only produce the file formats you want, use the --format argument
    $ python3 autosub/main.py --file ~/movie.mp4 --format srt txt
  • Open the video file and add this SRT file as a subtitle. You can just drag and drop in VLC.

How it works

Mozilla DeepSpeech is an open-source speech-to-text engine with support for fine-tuning using custom datasets, external language models, exporting memory-mapped models and a lot more. You should definitely check it out for STT tasks. So, when you run the script, I use FFMPEG to extract the audio from the video and save it in audio/. By default DeepSpeech is configured to accept 16kHz audio samples for inference, hence while extracting I make FFMPEG use 16kHz sampling rate.

Then, I use pyAudioAnalysis for silence removal - which basically takes the large audio file initially extracted, and splits it wherever silent regions are encountered, resulting in smaller audio segments which are much easier to process. I haven't used the whole library, instead I've integrated parts of it in autosub/featureExtraction.py and autosub/trainAudio.py. All these audio files are stored in audio/. Then for each audio segment, I perform DeepSpeech inference on it, and write the inferred text in a SRT file. After all files are processed, the final SRT file is stored in output/.

When I tested the script on my laptop, it took about 40 minutes to generate the SRT file for a 70 minutes video file. My config is an i5 dual-core @ 2.5 Ghz and 8GB RAM. Ideally, the whole process shouldn't take more than 60% of the duration of original video file.

Motivation

In the age of OTT platforms, there are still some who prefer to download movies/videos from YouTube/Facebook or even torrents rather than stream. I am one of them and on one such occasion, I couldn't find the subtitle file for a particular movie I had downloaded. Then the idea for AutoSub struck me and since I had worked with DeepSpeech previously, I decided to use it.

Contributing

I would love to follow up on any suggestions/issues you find :)

References

  1. https://github.com/mozilla/DeepSpeech/
  2. https://github.com/tyiannak/pyAudioAnalysis
  3. https://deepspeech.readthedocs.io/

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多