AutoSub is a CLI application to generate subtitle files (.srt, .vtt, and .txt transcript) for any video file using either Mozilla DeepSpeech or Coqui STT. I use their open-source models to run inference on audio segments and pyAudioAnalysis to split the initial audio on silent segments, producing multiple smaller files (makes inference easy).
⭐ Featured in DeepSpeech Examples by Mozilla
$ git clone https://github.com/abhirooptalasila/AutoSub $ cd AutoSub
AutoSub/ directory
$ python3 -m pip install --user virtualenv $ virtualenv -p python3 sub $ source sub/bin/activate
requirements.txt with requirements-gpu.txt. Make sure you have the appropriate CUDA version
$ pip install .
$ sudo apt-get install ffmpeg $ ffmpeg -version # I'm running 4.1.4
getmodels.sh to download DeepSpeech model and scorer files with the version number as argument. For Coqui, download from here
$ ./getmodels.sh 0.9.3
$ ./getmodels.sh 0.9.3
$ docker build -t autosub . $ docker run --volume=`pwd`/input:/input --name autosub autosub --file /input/video.mp4 $ docker cp autosub:/output/ .
$ docker build --build-arg BASEIMAGE=nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 --build-arg DEPSLIST=requirements-gpu.txt -t autosub-base . && \ docker run --gpus all --name autosub-base autosub-base --dry-run || \ docker commit --change 'CMD []' autosub-base autosub-instance
$ docker run --volume=`pwd`/input:/input --name autosub autosub-instance --file ~/video.mp4 $ docker cp autosub:/output/ .
--model and --scorer args while executing--engine argument with value "ds" for DeepSpeechautosub/main.py as given below. The --file argument is the video file for which subtitles are to be generated
$ python3 autosub/main.py --file ~/movie.mp4
output/--split-duration argument allows customization of the maximum number of seconds any given subtitle is displayed for. The default is 5 seconds
$ python3 autosub/main.py --file ~/movie.mp4 --split-duration 8
--format argument
$ python3 autosub/main.py --file ~/movie.mp4 --format srt txt
Mozilla DeepSpeech is an open-source speech-to-text engine with support for fine-tuning using custom datasets, external language models, exporting memory-mapped models and a lot more. You should definitely check it out for STT tasks. So, when you run the script, I use FFMPEG to extract the audio from the video and save it in audio/. By default DeepSpeech is configured to accept 16kHz audio samples for inference, hence while extracting I make FFMPEG use 16kHz sampling rate.
Then, I use pyAudioAnalysis for silence removal - which basically takes the large audio file initially extracted, and splits it wherever silent regions are encountered, resulting in smaller audio segments which are much easier to process. I haven't used the whole library, instead I've integrated parts of it in autosub/featureExtraction.py and autosub/trainAudio.py. All these audio files are stored in audio/. Then for each audio segment, I perform DeepSpeech inference on it, and write the inferred text in a SRT file. After all files are processed, the final SRT file is stored in output/.
When I tested the script on my laptop, it took about 40 minutes to generate the SRT file for a 70 minutes video file. My config is an i5 dual-core @ 2.5 Ghz and 8GB RAM. Ideally, the whole process shouldn't take more than 60% of the duration of original video file.
In the age of OTT platforms, there are still some who prefer to download movies/videos from YouTube/Facebook or even torrents rather than stream. I am one of them and on one such occasion, I couldn't find the subtitle file for a particular movie I had downloaded. Then the idea for AutoSub struck me and since I had worked with DeepSpeech previously, I decided to use it.
I would love to follow up on any suggestions/issues you find :)


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件 格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元 协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号