vidgear

vidgear

多线程异步视频处理框架 简化复杂任务

VidGear是一个高性能Python视频处理库,提供多线程和异步API框架。基于OpenCV、FFmpeg等库,简化复杂视频处理任务的开发。支持IP摄像头、网络流、屏幕捕获等多种视频源,具备视频稳定、编码、流媒体等功能。其简洁API设计使开发者能以少量代码实现复杂视频处理。

VidGear视频处理Python库多线程异步IOGithub开源项目
<!-- =============================================== vidgear library source-code is deployed under the Apache 2.0 License: Copyright (c) 2019 Abhishek Thakur(@abhiTronix) <abhi.una12@gmail.com> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =============================================== --> <h1 align="center"> <img src="https://abhitronix.github.io/vidgear/latest/assets/images/vidgear.png" alt="VidGear" title="Logo designed by Abhishek Thakur(@abhiTronix), under CC-BY-NC-SA 4.0 License" width="80%"/> </h1> <h2 align="center"> <img src="https://abhitronix.github.io/vidgear/latest/assets/images/tagline.svg" alt="VidGear tagline" width="40%"/> </h2> <div align="center">

[Releases][release]   |   [Gears][gears]   |   [Documentation][docs]   |   [Installation][installation]   |   License

[![Build Status][github-cli]][github-flow] [![Codecov branch][codecov]][code] [![Azure DevOps builds (branch)][azure-badge]][azure-pipeline]

[![Glitter chat][gitter-bagde]][gitter] [![Build Status][appveyor]][app] [![PyPi version][pypi-badge]][pypi]

[![Code Style][black-badge]][black]

</div>

 

VidGear is a High-Performance Video Processing Python Library that provides an easy-to-use, highly extensible, thoroughly optimised Multi-Threaded + Asyncio API Framework on top of many state-of-the-art specialized libraries like [OpenCV][opencv], [FFmpeg][ffmpeg], [ZeroMQ][zmq], [picamera2][picamera2], [starlette][starlette], [yt_dlp][yt_dlp], [pyscreenshot][pyscreenshot], [dxcam][dxcam], [aiortc][aiortc] and [python-mss][mss] serving at its backend, and enable us to flexibly exploit their internal parameters and methods, while silently delivering robust error-handling and real-time performance 🔥

VidGear primarily focuses on simplicity, and thereby lets programmers and software developers to easily integrate and perform Complex Video Processing Tasks, in just a few lines of code.

 

The following functional block diagram clearly depicts the generalized functioning of VidGear APIs:

<p align="center"> <img src="https://abhitronix.github.io/vidgear/latest/assets/images/gears_fbd.png" alt="@Vidgear Functional Block Diagram" /> </p>

 

Table of Contents

 

 

TL;DR

What is vidgear?

"VidGear is a cross-platform High-Performance Framework that provides an one-stop Video-Processing solution for building complex real-time media applications in python."

What does it do?

"VidGear can read, write, process, send & receive video files/frames/streams from/to various devices in real-time, and [faster][tqm-doc] than underline libraries."

What is its purpose?

"Write Less and Accomplish More"VidGear's Motto

"Built with simplicity in mind, VidGear lets programmers and software developers to easily integrate and perform Complex Video-Processing Tasks in their existing or newer applications without going through hefty documentation and in just a [few lines of code][switch_from_cv]. Beneficial for both, if you're new to programming with Python language or already a pro at it."

 

 

Getting Started

If this is your first time using VidGear, head straight to the [Installation ➶][installation] to install VidGear.

Once you have VidGear installed, Checkout its Well-Documented [Function-Specific Gears ➶][gears]

Also, if you're already familiar with [OpenCV][opencv] library, then see [Switching from OpenCV Library ➶][switch_from_cv]

Or, if you're just getting started with OpenCV-Python programming, then refer this FAQ ➶

 

 

Gears: What are these?

VidGear is built with multiple APIs a.k.a [Gears][gears], each with some unique functionality.

Each API is designed exclusively to handle/control/process different data-specific & device-specific video streams, network streams, and media encoders/decoders. These APIs provides the user an easy-to-use, dynamic, extensible, and exposed Multi-Threaded + Asyncio optimized internal layer above state-of-the-art libraries to work with, while silently delivering robust error-handling.

These Gears can be classified as follows:

A. Video-Capture Gears:

  • CamGear: Multi-Threaded API targeting various IP-USB-Cameras/Network-Streams/Streaming-Sites-URLs.
  • PiGear: Multi-Threaded API targeting various Camera Modules and (limited) USB cameras on Raspberry Pis :grapes:.
  • ScreenGear: High-performance API targeting rapid Screencasting Capabilities.
  • VideoGear: Common Video-Capture API with internal Video Stabilizer wrapper.

B. Video-Writer Gears:

  • WriteGear: Handles Lossless Video-Writer for file/stream/frames Encoding and Compression.

C. Streaming Gears:

  • StreamGear: Handles Transcoding of High-Quality, Dynamic & Adaptive Streaming Formats.

  • Asynchronous I/O Streaming Gear:

    • WebGear: ASGI Video-Server that broadcasts Live MJPEG-Frames to any web-browser on the network.
    • WebGear_RTC: Real-time Asyncio WebRTC media server for streaming directly to peer clients over the network.

D. Network Gears:

  • NetGear: Handles High-Performance Video-Frames & Data Transfer between interconnecting systems over the network.

  • Asynchronous I/O Network Gear:

    • NetGear_Async: Immensely Memory-Efficient Asyncio Video-Frames Network Messaging Framework.

 

 

CamGear

<p align="center"> <img src="https://abhitronix.github.io/vidgear/latest/assets/images/camgear.png" alt="CamGear Functional Block Diagram" width="45%"/> </p>

CamGear can grab ultra-fast frames from a diverse range of file-formats/devices/streams, which includes almost any IP-USB Cameras, multimedia video file-formats ([upto 4k tested][test-4k]), various network stream protocols such as http(s), rtp, rtsp, rtmp, mms, etc., and GStreamer's pipelines, plus direct support for live video streaming sites like YouTube, Twitch, LiveStream, Dailymotion etc.

CamGear provides a flexible, high-level, multi-threaded framework around OpenCV's [VideoCapture class][opencv-vc] with access almost all of its available parameters. CamGear internally implements [yt_dlp][yt_dlp] backend class for seamlessly pipelining live video-frames and metadata from various streaming services like [YouTube][youtube-doc], [Twitch][piping-live-videos], and many more ➶. Furthermore, its framework relies exclusively on [Threaded Queue mode][tqm-doc] for ultra-fast, error-free, and synchronized video-frame handling.

CamGear API Guide:

[>>> Usage Guide][camgear-doc]

 

 

VideoGear

VideoGear API provides a special internal wrapper around VidGear's exclusive [Video Stabilizer][stabilizer-doc] class.

VideoGear also acts as a Common Video-Capture API that provides internal access for both CamGear and PiGear APIs and their parameters with an exclusive enablePiCamera boolean flag.

VideoGear is ideal when you need to switch to different video sources without changing your code much. Also, it enables easy stabilization for various video-streams (real-time or not) with minimum effort and writing way fewer lines of code.

Below is a snapshot of a VideoGear Stabilizer in action (See its detailed usage [here][stabilizer-doc-ex]):

<p align="center"> <img src="https://user-images.githubusercontent.com/34266896/211500670-b3aaf4db-a52a-4836-a03c-c2c17b971feb.gif" alt="VideoGear Stabilizer in action!"/> <br> <sub><i>Original Video Courtesy <a href="http://liushuaicheng.org/SIGGRAPH2013/database.html" title="opensourced video samples database">@SIGGRAPH2013</a></i></sub> </p>

Code to generate above result:

# import required libraries from vidgear.gears import VideoGear import numpy as np import cv2 # open any valid video stream with stabilization enabled(`stabilize = True`) stream_stab = VideoGear(source="test.mp4", stabilize=True).start() # open same stream without stabilization for comparison stream_org = VideoGear(source="test.mp4").start() # loop over while True: # read stabilized frames frame_stab = stream_stab.read() # check for stabilized frame if Nonetype if frame_stab is None: break # read un-stabilized frame frame_org = stream_org.read() # concatenate both frames output_frame = np.concatenate((frame_org, frame_stab), axis=1) # put text over concatenated frame cv2.putText( output_frame, "Before", (10, output_frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2, ) cv2.putText( output_frame, "After", (output_frame.shape[1] // 2 + 10, output_frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2, ) # Show output window cv2.imshow("Stabilized Frame", output_frame) # check for 'q' key if pressed key = cv2.waitKey(1) & 0xFF if key == ord("q"): break # close output window cv2.destroyAllWindows() # safely close both video streams stream_org.stop() stream_stab.stop()

VideoGear API Guide:

[>>> Usage Guide][videogear-doc]

 

 

PiGear

<p align="center"> <img src="https://abhitronix.github.io/vidgear/latest/assets/images/picam2.webp" alt="PiGear" width="50%" /> </p>

PiGear is a specialized API similar to the CamGear API but optimized for Raspberry Pi :grapes: Boards, offering comprehensive support for camera modules (e.g., [OmniVision OV5647 Camera Module][ov5647-picam], [Sony IMX219 Camera Module][imx219-picam]), along with limited compatibility for USB cameras.

PiGear implements a seamless and robust wrapper around the [picamera2][picamera2] python library, simplifying integration with minimal code changes and ensuring a smooth transition for developers already familiar with the Picamera2 API. PiGear leverages the libcamera API under the hood with multi-threading, providing high-performance :fire:, enhanced control and functionality for Raspberry Pi camera modules.

PiGear handles common configuration parameters and non-standard settings for various camera types, simplifying the integration process. PiGear currently supports PiCamera2 API parameters such as sensor, controls, transform, and format etc., with internal type and sanity checks for robust performance.

While primarily focused on Raspberry Pi camera modules, PiGear also provides basic functionality for USB webcams only with Picamera2 API, along with the ability to accurately differentiate between USB and Raspberry Pi cameras using metadata.

PiGear seamlessly switches to the legacy [picamera][picamera] library if the picamera2 library is unavailable, ensuring seamless backward compatibility. For this, PiGear also provides a flexible multi-threaded framework around complete picamera API, allowing developers to effortlessly exploit a wide range of parameters, such as brightness, saturation, sensor_mode, iso, exposure, and more.

Furthermore, PiGear supports the use of multiple camera modules, including those found on Raspberry Pi Compute Module IO boards and USB cameras (only with Picamera2 API).

Best of all, PiGear contains Threaded Internal Timer - that silently keeps active track of any frozen-threads/hardware-failures and exit safely, if any does occur. That means that if you're running PiGear API in your script and someone accidentally pulls the Camera-Module cable out, instead of going into possible kernel panic, API will exit safely to save resources.

Code to open picamera2 stream with variable parameters in PiGear API:

# import required libraries from vidgear.gears import PiGear from libcamera import Transform import cv2 # formulate various Picamera2 API # configurational parameters options = { "controls": {"Brightness": 0.5, "ExposureValue": 2.0}, "transform": Transform(hflip=1), "sensor": {"output_size": (480, 320)}, # will override `resolution` "format": "RGB888", # 8-bit BGR } # open pi video stream with defined parameters stream = PiGear(resolution=(640, 480), framerate=60, logging=True, **options).start() # loop over while True: # read frames from stream frame = stream.read() # check for frame if Nonetype if frame is None: break # {do something with the frame here} # Show output window cv2.imshow("Output Frame", frame) # check for 'q' key if pressed key = cv2.waitKey(1) & 0xFF if key == ord("q"): break # close output window cv2.destroyAllWindows() # safely close video stream stream.stop()

PiGear API Guide:

[>>> Usage Guide][pigear-doc]

 

 

ScreenGear

ScreenGear is designed exclusively for targeting rapid Screencasting Capabilities, which means it can grab frames from your monitor in real-time, either by defining an area on the computer screen or full-screen, at the expense of inconsiderable latency. ScreenGear also seamlessly support frame capturing from multiple monitors as well as supports multiple backends.

ScreenGear implements a Lightning-Fast API wrapper around [dxcam][dxcam], [pyscreenshot][pyscreenshot] & [python-mss][mss] python libraries and also supports an easy and flexible direct internal parameters manipulation.

Below is a snapshot of a ScreenGear API in action:

<p align="center"> <img src="https://abhitronix.github.io/vidgear/latest/assets/gifs/screengear.gif" alt="ScreenGear in action!"/> </p>

Code to generate the above results:

# import required libraries from vidgear.gears import ScreenGear import cv2 # open video stream with default parameters stream = ScreenGear().start() # loop over while True: # read frames from stream frame = stream.read() # check for frame if Nonetype if frame is None: break # {do something with the frame here} # Show output window cv2.imshow("Output Frame", frame) # check for 'q' key if pressed key = cv2.waitKey(1) & 0xFF if key == ord("q"): break # close output window cv2.destroyAllWindows() # safely close video stream stream.stop()

ScreenGear API Guide:

[**>>> Usage

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多