Awesome-Quantization-Papers

Awesome-Quantization-Papers

深度学习模型量化研究论文综合列表

Awesome-Quantization-Papers是一个全面的深度学习模型量化研究论文列表,涵盖AI会议、期刊和arXiv上的最新成果。项目根据模型结构和应用场景进行分类,重点关注Transformer和CNN在视觉、语言处理等领域的量化方法。通过定期更新,为研究人员提供模型量化领域的最新进展。

模型量化深度学习神经网络Transformer低比特量化Github开源项目

Awesome-Quantization-Papers Awesome

This repo contains a comprehensive paper list of Model Quantization for efficient deep learning on AI conferences/journals/arXiv. As a highlight, we categorize the papers in terms of model structures and application scenarios, and label the quantization methods with keywords. <br>

This repo is being actively updated, and contributions in any form to make this list more comprehensive are welcome. Special thanks to collaborator Zhikai Li, and all researchers who have contributed to this repo! <br>

If you find this repo useful, please consider ★STARing and feel free to share it with others! <br>

[Update: Jul, 2024] Add new papers from CVPR-24. <br> [Update: May, 2024] Add new papers from ICLR-24. <br> [Update: Apr, 2024] Add new papers from AAAI-24. <br> [Update: Nov, 2023] Add new papers from NeurIPS-23. <br> [Update: Oct, 2023] Add new papers from ICCV-23. <br> [Update: Jul, 2023] Add new papers from AAAI-23 and ICML-23. <br> [Update: Jun, 2023] Add new arXiv papers uploaded in May 2023, especially the hot LLM quantization field. <br> [Update: Jun, 2023] Reborn this repo! New style, better experience! <br>


Overview

Keywords: PTQ: post-training quantization | Non-uniform: non-uniform quantization | MP: mixed-precision quantization | Extreme: binary or ternary quantization


Survey

  • "A Survey of Quantization Methods for Efficient Neural Network Inference", Book Chapter: Low-Power Computer Vision, 2021. [paper]
  • "Full Stack Optimization of Transformer Inference: a Survey", arXiv, 2023. [paper]
  • "A White Paper on Neural Network Quantization", arXiv, 2021. [paper]
  • "Binary Neural Networks: A Survey", PR, 2020. [Paper] [Extreme]

Transformer-based Models

Vision Transformers

  • "PTQ4SAM: Post-Training Quantization for Segment Anything", CVPR, 2024. [paper] [PTQ]
  • "Instance-Aware Group Quantization for Vision Transformers", CVPR, 2024. [paper] [PTQ]
  • "Bi-ViT: Pushing the Limit of Vision Transformer Quantization", AAAI, 2024. [paper] [Extreme]
  • "AQ-DETR: Low-Bit Quantized Detection Transformer with Auxiliary Queries", AAAI, 2024. [paper]
  • "LRP-QViT: Mixed-Precision Vision Transformer Quantization via Layer-wise Relevance Propagation", arXiv, 2023. [paper] [PTQ] [MP]
  • "MPTQ-ViT: Mixed-Precision Post-Training Quantization for Vision Transformer", arXiv, 2023. [paper] [PTQ] [MP]
  • "I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference", ICCV, 2023. [paper] [code]
  • "RepQ-ViT: Scale Reparameterization for Post-Training Quantization of Vision Transformers", ICCV, 2023. [paper] [code] [PTQ]
  • "QD-BEV: Quantization-aware View-guided Distillation for Multi-view 3D Object Detection", ICCV, 2023. [paper]
  • "BiViT: Extremely Compressed Binary Vision Transformers", ICCV, 2023. [paper] [Extreme]
  • "Jumping through Local Minima: Quantization in the Loss Landscape of Vision Transformers", ICCV, 2023. [paper]
  • "PackQViT: Faster Sub-8-bit Vision Transformers via Full and Packed Quantization on the Mobile", NeurIPS, 2023. [paper]
  • "Oscillation-free Quantization for Low-bit Vision Transformers", ICML, 2023. [paper] [code]
  • "PSAQ-ViT V2: Towards Accurate and General Data-Free Quantization for Vision Transformers", TNNLS, 2023. [paper]
  • "Variation-aware Vision Transformer Quantization", arXiv, 2023. [paper]
  • "NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers", CVPR, 2023. [paper] [PTQ]
  • "Boost Vision Transformer with GPU-Friendly Sparsity and Quantization", CVPR, 2023. [paper]
  • "Q-DETR: An Efficient Low-Bit Quantized Detection Transformer", CVPR, 2023. [paper]
  • "Output Sensitivity-Aware DETR Quantization", 2023. [paper]
  • "Q-HyViT: Post-Training Quantization for Hybrid Vision Transformer with Bridge Block Reconstruction", arXiv, 2023. [paper] [PTQ]
  • "Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer", NeurIPS, 2022. [paper] [code]
  • "Patch Similarity Aware Data-Free Quantization for Vision Transformers", ECCV, 2022. [paper] [code] [PTQ]
  • "PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization", ECCV, 2022. [paper] [code] [PTQ]
  • "FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer", IJCAI, 2022. [paper] [code] [PTQ]
  • "Q-ViT: Fully Differentiable Quantization for Vision Transformer", arXiv, 2022. [paper]
  • "Post-Training Quantization for Vision Transformer", NeurIPS, 2021. [paper] [PTQ]

[Back to Overview]

Language Transformers

  • "OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models", ICLR, 2024. [paper]"
  • "LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models", ICLR, 2024. [paper]
  • "SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression", ICLR, 2024. [paper] [PTQ]
  • "QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models", ICLR, 2024. [paper]
  • "QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models", ICLR, 2024. [paper] [PTQ]
  • "PB-LLM: Partially Binarized Large Language Models", ICLR, 2024. [paper] [Extreme]
  • "AffineQuant: Affine Transformation Quantization for Large Language Models", ICLR, 2024. [paper]
  • "Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models", ICLR, 2024. [paper]
  • "LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models", ICLR, 2024. [paper]
  • "OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models", AAAI, 2024. [paper]
  • "Norm Tweaking: High-Performance Low-Bit Quantization of Large Language Models", AAAI, 2024. [paper]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", AAAI, 2024. [paper]
  • "Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation", AAAI, 2024. [paper] [PTQ]
  • "What Makes Quantization for Large Language Model Hard? An Empirical Study from the Lens of Perturbation", AAAI, 2024. [paper]
  • "EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs", arXiv, 2024. [paper]
  • "IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact", arXiv, 2024. [paper]
  • "FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization", arXiv, 2024. [paper]
  • "A Comprehensive Evaluation of Quantization Strategies for Large Language Models", arXiv, 2024. [paper]
  • "GPTVQ: The Blessing of Dimensionality for LLM Quantization", arXiv, 2024. [paper]
  • "APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models", arXiv, 2024. [paper]
  • "EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge", arXiv, 2024. [paper]
  • "RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization", arXiv, 2024. [paper]
  • "Accurate LoRA-Finetuning Quantization of LLMs via Information Retention", arXiv, 2024. [paper]
  • "BiLLM: Pushing the Limit of Post-Training Quantization for LLMs", arXiv, 2024. [paper]
  • "KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization", arXiv, 2023. [paper]
  • "Extreme Compression of Large Language Models via Additive Quantization", arXiv, 2023. [paper]
  • "ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks", arXiv, 2023. [paper] [PTQ]
  • "CBQ: Cross-Block Quantization for Large Language Models", arXiv, 2023. [paper] [PTQ]
  • "FP8-BERT: Post-Training Quantization for Transformer", arXiv, 2023. [paper] [PTQ]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", arXiv, 2023. [paper]
  • "SmoothQuant+: Accurate and Efficient 4-bit Post-Training WeightQuantization for LLM", arXiv, 2023. [paper] [PTQ]
  • "A Speed Odyssey for Deployable Quantization of LLMs", arXiv, 2023.

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多