Awesome-Quantization-Papers

Awesome-Quantization-Papers

深度学习模型量化研究论文综合列表

Awesome-Quantization-Papers是一个全面的深度学习模型量化研究论文列表,涵盖AI会议、期刊和arXiv上的最新成果。项目根据模型结构和应用场景进行分类,重点关注Transformer和CNN在视觉、语言处理等领域的量化方法。通过定期更新,为研究人员提供模型量化领域的最新进展。

模型量化深度学习神经网络Transformer低比特量化Github开源项目

Awesome-Quantization-Papers Awesome

This repo contains a comprehensive paper list of Model Quantization for efficient deep learning on AI conferences/journals/arXiv. As a highlight, we categorize the papers in terms of model structures and application scenarios, and label the quantization methods with keywords. <br>

This repo is being actively updated, and contributions in any form to make this list more comprehensive are welcome. Special thanks to collaborator Zhikai Li, and all researchers who have contributed to this repo! <br>

If you find this repo useful, please consider ★STARing and feel free to share it with others! <br>

[Update: Jul, 2024] Add new papers from CVPR-24. <br> [Update: May, 2024] Add new papers from ICLR-24. <br> [Update: Apr, 2024] Add new papers from AAAI-24. <br> [Update: Nov, 2023] Add new papers from NeurIPS-23. <br> [Update: Oct, 2023] Add new papers from ICCV-23. <br> [Update: Jul, 2023] Add new papers from AAAI-23 and ICML-23. <br> [Update: Jun, 2023] Add new arXiv papers uploaded in May 2023, especially the hot LLM quantization field. <br> [Update: Jun, 2023] Reborn this repo! New style, better experience! <br>


Overview

Keywords: PTQ: post-training quantization | Non-uniform: non-uniform quantization | MP: mixed-precision quantization | Extreme: binary or ternary quantization


Survey

  • "A Survey of Quantization Methods for Efficient Neural Network Inference", Book Chapter: Low-Power Computer Vision, 2021. [paper]
  • "Full Stack Optimization of Transformer Inference: a Survey", arXiv, 2023. [paper]
  • "A White Paper on Neural Network Quantization", arXiv, 2021. [paper]
  • "Binary Neural Networks: A Survey", PR, 2020. [Paper] [Extreme]

Transformer-based Models

Vision Transformers

  • "PTQ4SAM: Post-Training Quantization for Segment Anything", CVPR, 2024. [paper] [PTQ]
  • "Instance-Aware Group Quantization for Vision Transformers", CVPR, 2024. [paper] [PTQ]
  • "Bi-ViT: Pushing the Limit of Vision Transformer Quantization", AAAI, 2024. [paper] [Extreme]
  • "AQ-DETR: Low-Bit Quantized Detection Transformer with Auxiliary Queries", AAAI, 2024. [paper]
  • "LRP-QViT: Mixed-Precision Vision Transformer Quantization via Layer-wise Relevance Propagation", arXiv, 2023. [paper] [PTQ] [MP]
  • "MPTQ-ViT: Mixed-Precision Post-Training Quantization for Vision Transformer", arXiv, 2023. [paper] [PTQ] [MP]
  • "I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference", ICCV, 2023. [paper] [code]
  • "RepQ-ViT: Scale Reparameterization for Post-Training Quantization of Vision Transformers", ICCV, 2023. [paper] [code] [PTQ]
  • "QD-BEV: Quantization-aware View-guided Distillation for Multi-view 3D Object Detection", ICCV, 2023. [paper]
  • "BiViT: Extremely Compressed Binary Vision Transformers", ICCV, 2023. [paper] [Extreme]
  • "Jumping through Local Minima: Quantization in the Loss Landscape of Vision Transformers", ICCV, 2023. [paper]
  • "PackQViT: Faster Sub-8-bit Vision Transformers via Full and Packed Quantization on the Mobile", NeurIPS, 2023. [paper]
  • "Oscillation-free Quantization for Low-bit Vision Transformers", ICML, 2023. [paper] [code]
  • "PSAQ-ViT V2: Towards Accurate and General Data-Free Quantization for Vision Transformers", TNNLS, 2023. [paper]
  • "Variation-aware Vision Transformer Quantization", arXiv, 2023. [paper]
  • "NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers", CVPR, 2023. [paper] [PTQ]
  • "Boost Vision Transformer with GPU-Friendly Sparsity and Quantization", CVPR, 2023. [paper]
  • "Q-DETR: An Efficient Low-Bit Quantized Detection Transformer", CVPR, 2023. [paper]
  • "Output Sensitivity-Aware DETR Quantization", 2023. [paper]
  • "Q-HyViT: Post-Training Quantization for Hybrid Vision Transformer with Bridge Block Reconstruction", arXiv, 2023. [paper] [PTQ]
  • "Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer", NeurIPS, 2022. [paper] [code]
  • "Patch Similarity Aware Data-Free Quantization for Vision Transformers", ECCV, 2022. [paper] [code] [PTQ]
  • "PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization", ECCV, 2022. [paper] [code] [PTQ]
  • "FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer", IJCAI, 2022. [paper] [code] [PTQ]
  • "Q-ViT: Fully Differentiable Quantization for Vision Transformer", arXiv, 2022. [paper]
  • "Post-Training Quantization for Vision Transformer", NeurIPS, 2021. [paper] [PTQ]

[Back to Overview]

Language Transformers

  • "OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models", ICLR, 2024. [paper]"
  • "LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models", ICLR, 2024. [paper]
  • "SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression", ICLR, 2024. [paper] [PTQ]
  • "QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models", ICLR, 2024. [paper]
  • "QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models", ICLR, 2024. [paper] [PTQ]
  • "PB-LLM: Partially Binarized Large Language Models", ICLR, 2024. [paper] [Extreme]
  • "AffineQuant: Affine Transformation Quantization for Large Language Models", ICLR, 2024. [paper]
  • "Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models", ICLR, 2024. [paper]
  • "LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models", ICLR, 2024. [paper]
  • "OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models", AAAI, 2024. [paper]
  • "Norm Tweaking: High-Performance Low-Bit Quantization of Large Language Models", AAAI, 2024. [paper]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", AAAI, 2024. [paper]
  • "Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation", AAAI, 2024. [paper] [PTQ]
  • "What Makes Quantization for Large Language Model Hard? An Empirical Study from the Lens of Perturbation", AAAI, 2024. [paper]
  • "EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs", arXiv, 2024. [paper]
  • "IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact", arXiv, 2024. [paper]
  • "FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization", arXiv, 2024. [paper]
  • "A Comprehensive Evaluation of Quantization Strategies for Large Language Models", arXiv, 2024. [paper]
  • "GPTVQ: The Blessing of Dimensionality for LLM Quantization", arXiv, 2024. [paper]
  • "APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models", arXiv, 2024. [paper]
  • "EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge", arXiv, 2024. [paper]
  • "RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization", arXiv, 2024. [paper]
  • "Accurate LoRA-Finetuning Quantization of LLMs via Information Retention", arXiv, 2024. [paper]
  • "BiLLM: Pushing the Limit of Post-Training Quantization for LLMs", arXiv, 2024. [paper]
  • "KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization", arXiv, 2023. [paper]
  • "Extreme Compression of Large Language Models via Additive Quantization", arXiv, 2023. [paper]
  • "ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks", arXiv, 2023. [paper] [PTQ]
  • "CBQ: Cross-Block Quantization for Large Language Models", arXiv, 2023. [paper] [PTQ]
  • "FP8-BERT: Post-Training Quantization for Transformer", arXiv, 2023. [paper] [PTQ]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", arXiv, 2023. [paper]
  • "SmoothQuant+: Accurate and Efficient 4-bit Post-Training WeightQuantization for LLM", arXiv, 2023. [paper] [PTQ]
  • "A Speed Odyssey for Deployable Quantization of LLMs", arXiv, 2023.

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多