paasta

paasta

基于Kubernetes的容器服务构建部署和管理系统

PaaSTA是基于Kubernetes的容器服务管理系统,提供简化的服务描述方式,自动配置基础设施,实现监控、日志和成本管理。该系统支持声明式控制、故障容错和高效资源利用,集成多种开源组件,为用户提供全面的服务管理解决方案。PaaSTA自2016年起在Yelp生产环境中运行,具有高可用性和可扩展性。

PaaSTAKubernetes容器化服务分布式系统微服务架构Github开源项目

Build Status Documentation Status

PaaSTA - Build, Deploy, Connect, and Monitor Services

PaaSTA Logo

PaaSTA is a highly-available, distributed system for building, deploying, and running services using containers and Kubernetes.

PaaSTA has been running production services at Yelp since 2016. It was originally designed to run on top of Apache Mesos but has subsequently been updated to use Kubernetes. Over time the features and functionality that PaaSTA provides have increased but the principal design remains the same.

PaaSTA aims to take a declarative description of the services that teams need to run and then ensures that those services are deployed safely, efficiently, and in a manner that is easy for the teams to maintain. Rather than managing Kubernetes YAML files, PaaSTA provides a simplified schema to describe your service and in addition to configuring Kubernetes it can also configure other infrastructure tools to provide monitoring, logging, cost management etc.

Want to know more about the opinions behind what makes PaaSTA special? Check out the PaaSTA Principles.

Components

Note: PaaSTA is an opinionated platform that uses a few un-opinionated tools. It requires a non-trivial amount of infrastructure to be in place before it works completely:

  • Docker for code delivery and containment
  • Kubernetes for code execution and scheduling (runs Docker containers)
  • Tron for running things on a timer (nightly batches)
  • SmartStack and Envoy for service registration and discovery
  • Sensu for monitoring/alerting
  • Jenkins (optionally) for continuous deployment
  • Prometheus and HPA for autoscaling services

One advantage to having a PaaS composed of components like these is you get to reuse them for other purposes. For example, at Yelp Sensu is not just for PaaSTA, it can be used to monitor all sorts of things. We also use Kubernetes to run other more complex workloads like Jolt and Cassandra. Our service mesh, which is a heavily customised version of SmartStack and Envoy, allows many systems at Yelp to communicate with PaaSTA services and each other.

On the other hand, requiring lots of components, means lots of infrastructure to setup before PaaSTA can work effectively! Realistacally, running PaaSTA outside of Yelp would not be sensible, because in addition to the integrations mentioned above we also have strong opinions encoded in other tooling that you would need to replicate. Nevertheless, we code PaaSTA in the open because we think it is useful to share our approach and hope that the code can at least help others understand or solve similar problems.

Integrations and Features

In addition to the direct integrations above PaaSTA also relies on other components to provide PaaSTA users with other features and to manage compute capacity at Yelp.

  • We use Karpenter to autoscale pools of EC2 instances to run PaaSTA. Formerly we used our own autoscaler Clusterman
  • We bake AMIs using Packer
  • We collect logs from services and send them via Monk to Kafka
  • We use StatefulSets to run a few stateful PaaSTA services
  • We autotune the resources needed by each service by monitoring usage (similar to VPA)

Design Goals

  • Declarative, rather than imperative, control
  • Fault tolerance
  • Service isolation
  • Efficient use of resources
  • No single points of failure
  • Pleasant interface

Getting Started

See the getting started documentation for how to deploy PaaSTA. This reference is intended to help understand how PaaSTA works but we don't advise that you use PaaSTA in production.

Debugging PaaSTA (in VS Code)

To debug PaaSTA in VS Code, please refer to the internal PaaSTA wiki page "Debugging PaaSTA (in VS Code)".

Documentation

Read the documentation at Read the Docs.

Yelp-internal Documentation/Links

Videos / Talks About PaaSTA

License

PaaSTA is licensed under the Apache License, Version 2.0: http://www.apache.org/licenses/LICENSE-2.0

Contributing

Everyone is encouraged to contribute to PaaSTA by forking the Github repository and making a pull request or opening an issue.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多