paasta

paasta

基于Kubernetes的容器服务构建部署和管理系统

PaaSTA是基于Kubernetes的容器服务管理系统,提供简化的服务描述方式,自动配置基础设施,实现监控、日志和成本管理。该系统支持声明式控制、故障容错和高效资源利用,集成多种开源组件,为用户提供全面的服务管理解决方案。PaaSTA自2016年起在Yelp生产环境中运行,具有高可用性和可扩展性。

PaaSTAKubernetes容器化服务分布式系统微服务架构Github开源项目

Build Status Documentation Status

PaaSTA - Build, Deploy, Connect, and Monitor Services

PaaSTA Logo

PaaSTA is a highly-available, distributed system for building, deploying, and running services using containers and Kubernetes.

PaaSTA has been running production services at Yelp since 2016. It was originally designed to run on top of Apache Mesos but has subsequently been updated to use Kubernetes. Over time the features and functionality that PaaSTA provides have increased but the principal design remains the same.

PaaSTA aims to take a declarative description of the services that teams need to run and then ensures that those services are deployed safely, efficiently, and in a manner that is easy for the teams to maintain. Rather than managing Kubernetes YAML files, PaaSTA provides a simplified schema to describe your service and in addition to configuring Kubernetes it can also configure other infrastructure tools to provide monitoring, logging, cost management etc.

Want to know more about the opinions behind what makes PaaSTA special? Check out the PaaSTA Principles.

Components

Note: PaaSTA is an opinionated platform that uses a few un-opinionated tools. It requires a non-trivial amount of infrastructure to be in place before it works completely:

  • Docker for code delivery and containment
  • Kubernetes for code execution and scheduling (runs Docker containers)
  • Tron for running things on a timer (nightly batches)
  • SmartStack and Envoy for service registration and discovery
  • Sensu for monitoring/alerting
  • Jenkins (optionally) for continuous deployment
  • Prometheus and HPA for autoscaling services

One advantage to having a PaaS composed of components like these is you get to reuse them for other purposes. For example, at Yelp Sensu is not just for PaaSTA, it can be used to monitor all sorts of things. We also use Kubernetes to run other more complex workloads like Jolt and Cassandra. Our service mesh, which is a heavily customised version of SmartStack and Envoy, allows many systems at Yelp to communicate with PaaSTA services and each other.

On the other hand, requiring lots of components, means lots of infrastructure to setup before PaaSTA can work effectively! Realistacally, running PaaSTA outside of Yelp would not be sensible, because in addition to the integrations mentioned above we also have strong opinions encoded in other tooling that you would need to replicate. Nevertheless, we code PaaSTA in the open because we think it is useful to share our approach and hope that the code can at least help others understand or solve similar problems.

Integrations and Features

In addition to the direct integrations above PaaSTA also relies on other components to provide PaaSTA users with other features and to manage compute capacity at Yelp.

  • We use Karpenter to autoscale pools of EC2 instances to run PaaSTA. Formerly we used our own autoscaler Clusterman
  • We bake AMIs using Packer
  • We collect logs from services and send them via Monk to Kafka
  • We use StatefulSets to run a few stateful PaaSTA services
  • We autotune the resources needed by each service by monitoring usage (similar to VPA)

Design Goals

  • Declarative, rather than imperative, control
  • Fault tolerance
  • Service isolation
  • Efficient use of resources
  • No single points of failure
  • Pleasant interface

Getting Started

See the getting started documentation for how to deploy PaaSTA. This reference is intended to help understand how PaaSTA works but we don't advise that you use PaaSTA in production.

Debugging PaaSTA (in VS Code)

To debug PaaSTA in VS Code, please refer to the internal PaaSTA wiki page "Debugging PaaSTA (in VS Code)".

Documentation

Read the documentation at Read the Docs.

Yelp-internal Documentation/Links

Videos / Talks About PaaSTA

License

PaaSTA is licensed under the Apache License, Version 2.0: http://www.apache.org/licenses/LICENSE-2.0

Contributing

Everyone is encouraged to contribute to PaaSTA by forking the Github repository and making a pull request or opening an issue.

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多