RGBD-semantic-segmentation

RGBD-semantic-segmentation

RGB-D语义分割技术发展综述及性能评估

本项目汇总了RGB-D语义分割领域的最新研究成果,提供详尽的论文列表和性能对比。涵盖NYUDv2等主流数据集的基准结果,包括像素精度、平均精度、mIoU等关键指标。通过定期更新反映该领域最新进展,为计算机视觉研究人员提供全面的参考资源。项目内容还包括数据集介绍、评估指标说明和详细的性能对比表格,全面呈现RGB-D语义分割技术的发展脉络。对于想深入了解该领域的研究人员和工程师而言,这是一个高价值的信息聚合平台。

RGBD语义分割深度学习数据集评估指标性能对比Github开源项目

RGBD semantic segmentation

A paper list of RGBD semantic segmentation.

*Last updated: 2023/10/07

Update log

2020/May - update all of recent papers and make some diagram about history of RGBD semantic segmentation.
2020/July - update some recent papers (CVPR2020) of RGBD semantic segmentation.
2020/August - update some recent papers (ECCV2020) of RGBD semantic segmentation.
2020/October - update some recent papers (CVPR2020, WACV2020) of RGBD semantic segmentation.
2020/November - update some recent papers (ECCV2020, arXiv), the links of papers and codes for RGBD semantic segmentation.
2020/December - update some recent papers (PAMI, PRL, arXiv, ACCV) of RGBD semantic segmentation.
2021/February - update some recent papers (TMM, NeurIPS, arXiv) of RGBD semantic segmentation.
2021/April - update some recent papers (CVPR2021, ICRA2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2021/July - update some recent papers (CVPR2021, ICME2021, arXiv) of RGBD semantic segmentation.
2021/August - update some recent papers (IJCV, ICCV2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/January - update some recent papers (TITS, PR, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/March - update benchmark results on Cityscapes and ScanNet datasets.
2022/April - update some recent papers (CVPR, BMVC, IEEE TMM, arXiv) of RGBD semantic segmentation.
2022/May - update some recent papers of RGBD semantic segmentation.
2022/July - update some recent papers of RGBD semantic segmentation.
2023/January - update some recent papers of RGBD semantic segmentation.
2023/October - update some recent papers of RGBD semantic segmentation.

Table of Contents

Datasets

The papers related to datasets used mainly in natural/color image segmentation are as follows.

  • [NYUDv2] The NYU-Depth V2 dataset consists of 1449 RGB-D images showing interior scenes, which all labels are usually mapped to 40 classes. The standard training and test set contain 795 and 654 images, respectively.
  • [SUN RGB-D] The SUN RGB-D dataset contains 10,335 RGBD images with semantic labels organized in 37 categories. The 5,285 images are used for training, and 5050 images are used for testing.
  • [2D-3D-S] Stanford-2D-3D-Semantic dataset contains 70496 RGB and depth images as well as 2D annotation with 13 object categories. Areas 1, 2, 3, 4, and 6 are utilized as the training and Area 5 is used as the testing set.
  • [Cityscapes] Cityscapes contains a diverse set of stereo video sequences recorded in street scenes from 50 different cities, with high quality pixel-level annotations of 5 000 frames in addition to a larger set of 20 000 weakly annotated frames.
  • [ScanNet] ScanNet is an RGB-D video dataset containing 2.5 million views in more than 1500 scans, annotated with 3D camera poses, surface reconstructions, and instance-level semantic segmentations.

Metrics

The papers related to metrics used mainly in RGBD semantic segmentation are as follows.

  • [PixAcc] Pixel accuracy
  • [mAcc] Mean accuracy
  • [mIoU] Mean intersection over union
  • [f.w.IOU] Frequency weighted IOU

Performance tables

Speed is related to the hardware spec (e.g. CPU, GPU, RAM, etc), so it is hard to make an equal comparison. We select four indexes namely PixAcc, mAcc, mIoU, and f.w.IOU to make comparison. The closer the segmentation result is to the ground truth, the higher the above four indexes are.

NYUDv2

MethodPixAccmAccmIoUf.w.IOUInputRef. fromPublishedYear
POR59.128.429.1RGBDCVPR2013
RGBD R-CNN60.335.131.347(in LSD-GF)RGBDECCV2014
DeconvNet69.956.442.756RGBLSD-GFICCV2015
DeepLab68.746.936.852.5RGBDSTD2PICLR2015
CRF-RNN66.348.935.451RGBDSTD2PICCV2015
Multi-Scale CNN65.645.134.151.4RGBLCSF-DeconvICCV2015
FCN65.446.13449.5RGBDLCSF-DeconvCVPR2015
Mutex Constraints63.831.548.5 (in LSD-GF)RGBDICCV2015
E2S258.152.93144.2RGBDSTD2PECCV2016
BI-300058.939.327.743RGBDSTD2PECCV2016
BI-100057.737.827.141.9RGBDSTD2PECCV2016
LCSF-Deconv47.3RGBDECCV2016
LSTM-CF49.4RGBDECCV2016
CRF+RF+RFS73.8RGBDPRL2016
RDFNet-1527662.850.1RGBDICCV2017
SCN-ResNet15249.6RGBDICCV2017
RDFNet-5074.860.447.7RGBDICCV2017
CFN(RefineNet)47.7RGBDICCV2017
RefineNet-15273.658.946.5RGBCVPR2017
LSD-GF71.960.745.959.3RGBDCVPR2017
3D-GNN55.743.1RGBDICCV2017
DML-Res5040.2RGBIJCAI2017
STD2P70.153.840.155.7RGBDCVPR2017
PBR-CNN33.2RGBICCBS2017
B-SegNet6845.832.4RGBBMVC2017
FC-CRF63.13929.548.4RGBDTIP2017
LCR55.631.721.839.9RGBDICIP2017
SegNet54.130.52138.5RGBDLCRTPAMI2017
D-Refine-15274.159.547RGBICPR2018
TRL-ResNet5076.256.346.4RGBECCV2018
D-CNN56.343.9RGBDECCV2018
RGBD-Geo70.351.741.254.2RGBDMTA2018
Context7053.640.6RGBTPAMI2018
DeepLab-LFOV70.349.639.454.7RGBDSTD2PTPAMI2018
D-depth-reg66.746.334.850.6RGBDPRL2018
PU-Loop72.144.5RGBCVPR2018
C-DCNN6950.839.8RGBTNNLS2018
GAD84.868.759.6RGBCVPR2019
CTS-IM76.350.6RGBDICIP2019
PAP76.262.550.4RGBCVPR2019
KIL-ResNet10175.158.450.2RGBACPR2019
2.5D-Conv75.949.1RGBDICIP2019
ACNet48.3RGBDICIP2019
3M2RNet766348RGBDSIC2019
FDNet-16s73.960.347.4RGBAAAI2019
DMFNet74.459.346.8RGBDIEEE Access2019
MMAF-Net-15272.259.244.8RGBDarXiv2019
RTJ-AA42RGBICRA2019
JTRL-ResNet5081.360.050.3RGBTPAMI2019
3DN-Conv52.439.3RGB3DV2019
SGNet76.863.151RGBDTIP2020
SCN-ResNet10148.3RGBDTCYB2020
RefineNet-Res152-Pool474.459.647.6RGBTPAMI2020
TSNet73.559.646.1RGBDIEEE IS2020
PSD-ResNet5077.058.651.0RGBCVPR2020
Malleable 2.5D76.950.9RGBDECCV2020
BCMFP+SA-Gate77.952.4RGBDECCV2020
MTI-Net75.362.949.0RGB

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多