RGBD-semantic-segmentation

RGBD-semantic-segmentation

RGB-D语义分割技术发展综述及性能评估

本项目汇总了RGB-D语义分割领域的最新研究成果,提供详尽的论文列表和性能对比。涵盖NYUDv2等主流数据集的基准结果,包括像素精度、平均精度、mIoU等关键指标。通过定期更新反映该领域最新进展,为计算机视觉研究人员提供全面的参考资源。项目内容还包括数据集介绍、评估指标说明和详细的性能对比表格,全面呈现RGB-D语义分割技术的发展脉络。对于想深入了解该领域的研究人员和工程师而言,这是一个高价值的信息聚合平台。

RGBD语义分割深度学习数据集评估指标性能对比Github开源项目

RGBD semantic segmentation

A paper list of RGBD semantic segmentation.

*Last updated: 2023/10/07

Update log

2020/May - update all of recent papers and make some diagram about history of RGBD semantic segmentation.
2020/July - update some recent papers (CVPR2020) of RGBD semantic segmentation.
2020/August - update some recent papers (ECCV2020) of RGBD semantic segmentation.
2020/October - update some recent papers (CVPR2020, WACV2020) of RGBD semantic segmentation.
2020/November - update some recent papers (ECCV2020, arXiv), the links of papers and codes for RGBD semantic segmentation.
2020/December - update some recent papers (PAMI, PRL, arXiv, ACCV) of RGBD semantic segmentation.
2021/February - update some recent papers (TMM, NeurIPS, arXiv) of RGBD semantic segmentation.
2021/April - update some recent papers (CVPR2021, ICRA2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2021/July - update some recent papers (CVPR2021, ICME2021, arXiv) of RGBD semantic segmentation.
2021/August - update some recent papers (IJCV, ICCV2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/January - update some recent papers (TITS, PR, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/March - update benchmark results on Cityscapes and ScanNet datasets.
2022/April - update some recent papers (CVPR, BMVC, IEEE TMM, arXiv) of RGBD semantic segmentation.
2022/May - update some recent papers of RGBD semantic segmentation.
2022/July - update some recent papers of RGBD semantic segmentation.
2023/January - update some recent papers of RGBD semantic segmentation.
2023/October - update some recent papers of RGBD semantic segmentation.

Table of Contents

Datasets

The papers related to datasets used mainly in natural/color image segmentation are as follows.

  • [NYUDv2] The NYU-Depth V2 dataset consists of 1449 RGB-D images showing interior scenes, which all labels are usually mapped to 40 classes. The standard training and test set contain 795 and 654 images, respectively.
  • [SUN RGB-D] The SUN RGB-D dataset contains 10,335 RGBD images with semantic labels organized in 37 categories. The 5,285 images are used for training, and 5050 images are used for testing.
  • [2D-3D-S] Stanford-2D-3D-Semantic dataset contains 70496 RGB and depth images as well as 2D annotation with 13 object categories. Areas 1, 2, 3, 4, and 6 are utilized as the training and Area 5 is used as the testing set.
  • [Cityscapes] Cityscapes contains a diverse set of stereo video sequences recorded in street scenes from 50 different cities, with high quality pixel-level annotations of 5 000 frames in addition to a larger set of 20 000 weakly annotated frames.
  • [ScanNet] ScanNet is an RGB-D video dataset containing 2.5 million views in more than 1500 scans, annotated with 3D camera poses, surface reconstructions, and instance-level semantic segmentations.

Metrics

The papers related to metrics used mainly in RGBD semantic segmentation are as follows.

  • [PixAcc] Pixel accuracy
  • [mAcc] Mean accuracy
  • [mIoU] Mean intersection over union
  • [f.w.IOU] Frequency weighted IOU

Performance tables

Speed is related to the hardware spec (e.g. CPU, GPU, RAM, etc), so it is hard to make an equal comparison. We select four indexes namely PixAcc, mAcc, mIoU, and f.w.IOU to make comparison. The closer the segmentation result is to the ground truth, the higher the above four indexes are.

NYUDv2

MethodPixAccmAccmIoUf.w.IOUInputRef. fromPublishedYear
POR59.128.429.1RGBDCVPR2013
RGBD R-CNN60.335.131.347(in LSD-GF)RGBDECCV2014
DeconvNet69.956.442.756RGBLSD-GFICCV2015
DeepLab68.746.936.852.5RGBDSTD2PICLR2015
CRF-RNN66.348.935.451RGBDSTD2PICCV2015
Multi-Scale CNN65.645.134.151.4RGBLCSF-DeconvICCV2015
FCN65.446.13449.5RGBDLCSF-DeconvCVPR2015
Mutex Constraints63.831.548.5 (in LSD-GF)RGBDICCV2015
E2S258.152.93144.2RGBDSTD2PECCV2016
BI-300058.939.327.743RGBDSTD2PECCV2016
BI-100057.737.827.141.9RGBDSTD2PECCV2016
LCSF-Deconv47.3RGBDECCV2016
LSTM-CF49.4RGBDECCV2016
CRF+RF+RFS73.8RGBDPRL2016
RDFNet-1527662.850.1RGBDICCV2017
SCN-ResNet15249.6RGBDICCV2017
RDFNet-5074.860.447.7RGBDICCV2017
CFN(RefineNet)47.7RGBDICCV2017
RefineNet-15273.658.946.5RGBCVPR2017
LSD-GF71.960.745.959.3RGBDCVPR2017
3D-GNN55.743.1RGBDICCV2017
DML-Res5040.2RGBIJCAI2017
STD2P70.153.840.155.7RGBDCVPR2017
PBR-CNN33.2RGBICCBS2017
B-SegNet6845.832.4RGBBMVC2017
FC-CRF63.13929.548.4RGBDTIP2017
LCR55.631.721.839.9RGBDICIP2017
SegNet54.130.52138.5RGBDLCRTPAMI2017
D-Refine-15274.159.547RGBICPR2018
TRL-ResNet5076.256.346.4RGBECCV2018
D-CNN56.343.9RGBDECCV2018
RGBD-Geo70.351.741.254.2RGBDMTA2018
Context7053.640.6RGBTPAMI2018
DeepLab-LFOV70.349.639.454.7RGBDSTD2PTPAMI2018
D-depth-reg66.746.334.850.6RGBDPRL2018
PU-Loop72.144.5RGBCVPR2018
C-DCNN6950.839.8RGBTNNLS2018
GAD84.868.759.6RGBCVPR2019
CTS-IM76.350.6RGBDICIP2019
PAP76.262.550.4RGBCVPR2019
KIL-ResNet10175.158.450.2RGBACPR2019
2.5D-Conv75.949.1RGBDICIP2019
ACNet48.3RGBDICIP2019
3M2RNet766348RGBDSIC2019
FDNet-16s73.960.347.4RGBAAAI2019
DMFNet74.459.346.8RGBDIEEE Access2019
MMAF-Net-15272.259.244.8RGBDarXiv2019
RTJ-AA42RGBICRA2019
JTRL-ResNet5081.360.050.3RGBTPAMI2019
3DN-Conv52.439.3RGB3DV2019
SGNet76.863.151RGBDTIP2020
SCN-ResNet10148.3RGBDTCYB2020
RefineNet-Res152-Pool474.459.647.6RGBTPAMI2020
TSNet73.559.646.1RGBDIEEE IS2020
PSD-ResNet5077.058.651.0RGBCVPR2020
Malleable 2.5D76.950.9RGBDECCV2020
BCMFP+SA-Gate77.952.4RGBDECCV2020
MTI-Net75.362.949.0RGB

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多