RGBD-semantic-segmentation

RGBD-semantic-segmentation

RGB-D语义分割技术发展综述及性能评估

本项目汇总了RGB-D语义分割领域的最新研究成果,提供详尽的论文列表和性能对比。涵盖NYUDv2等主流数据集的基准结果,包括像素精度、平均精度、mIoU等关键指标。通过定期更新反映该领域最新进展,为计算机视觉研究人员提供全面的参考资源。项目内容还包括数据集介绍、评估指标说明和详细的性能对比表格,全面呈现RGB-D语义分割技术的发展脉络。对于想深入了解该领域的研究人员和工程师而言,这是一个高价值的信息聚合平台。

RGBD语义分割深度学习数据集评估指标性能对比Github开源项目

RGBD semantic segmentation

A paper list of RGBD semantic segmentation.

*Last updated: 2023/10/07

Update log

2020/May - update all of recent papers and make some diagram about history of RGBD semantic segmentation.
2020/July - update some recent papers (CVPR2020) of RGBD semantic segmentation.
2020/August - update some recent papers (ECCV2020) of RGBD semantic segmentation.
2020/October - update some recent papers (CVPR2020, WACV2020) of RGBD semantic segmentation.
2020/November - update some recent papers (ECCV2020, arXiv), the links of papers and codes for RGBD semantic segmentation.
2020/December - update some recent papers (PAMI, PRL, arXiv, ACCV) of RGBD semantic segmentation.
2021/February - update some recent papers (TMM, NeurIPS, arXiv) of RGBD semantic segmentation.
2021/April - update some recent papers (CVPR2021, ICRA2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2021/July - update some recent papers (CVPR2021, ICME2021, arXiv) of RGBD semantic segmentation.
2021/August - update some recent papers (IJCV, ICCV2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/January - update some recent papers (TITS, PR, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/March - update benchmark results on Cityscapes and ScanNet datasets.
2022/April - update some recent papers (CVPR, BMVC, IEEE TMM, arXiv) of RGBD semantic segmentation.
2022/May - update some recent papers of RGBD semantic segmentation.
2022/July - update some recent papers of RGBD semantic segmentation.
2023/January - update some recent papers of RGBD semantic segmentation.
2023/October - update some recent papers of RGBD semantic segmentation.

Table of Contents

Datasets

The papers related to datasets used mainly in natural/color image segmentation are as follows.

  • [NYUDv2] The NYU-Depth V2 dataset consists of 1449 RGB-D images showing interior scenes, which all labels are usually mapped to 40 classes. The standard training and test set contain 795 and 654 images, respectively.
  • [SUN RGB-D] The SUN RGB-D dataset contains 10,335 RGBD images with semantic labels organized in 37 categories. The 5,285 images are used for training, and 5050 images are used for testing.
  • [2D-3D-S] Stanford-2D-3D-Semantic dataset contains 70496 RGB and depth images as well as 2D annotation with 13 object categories. Areas 1, 2, 3, 4, and 6 are utilized as the training and Area 5 is used as the testing set.
  • [Cityscapes] Cityscapes contains a diverse set of stereo video sequences recorded in street scenes from 50 different cities, with high quality pixel-level annotations of 5 000 frames in addition to a larger set of 20 000 weakly annotated frames.
  • [ScanNet] ScanNet is an RGB-D video dataset containing 2.5 million views in more than 1500 scans, annotated with 3D camera poses, surface reconstructions, and instance-level semantic segmentations.

Metrics

The papers related to metrics used mainly in RGBD semantic segmentation are as follows.

  • [PixAcc] Pixel accuracy
  • [mAcc] Mean accuracy
  • [mIoU] Mean intersection over union
  • [f.w.IOU] Frequency weighted IOU

Performance tables

Speed is related to the hardware spec (e.g. CPU, GPU, RAM, etc), so it is hard to make an equal comparison. We select four indexes namely PixAcc, mAcc, mIoU, and f.w.IOU to make comparison. The closer the segmentation result is to the ground truth, the higher the above four indexes are.

NYUDv2

MethodPixAccmAccmIoUf.w.IOUInputRef. fromPublishedYear
POR59.128.429.1RGBDCVPR2013
RGBD R-CNN60.335.131.347(in LSD-GF)RGBDECCV2014
DeconvNet69.956.442.756RGBLSD-GFICCV2015
DeepLab68.746.936.852.5RGBDSTD2PICLR2015
CRF-RNN66.348.935.451RGBDSTD2PICCV2015
Multi-Scale CNN65.645.134.151.4RGBLCSF-DeconvICCV2015
FCN65.446.13449.5RGBDLCSF-DeconvCVPR2015
Mutex Constraints63.831.548.5 (in LSD-GF)RGBDICCV2015
E2S258.152.93144.2RGBDSTD2PECCV2016
BI-300058.939.327.743RGBDSTD2PECCV2016
BI-100057.737.827.141.9RGBDSTD2PECCV2016
LCSF-Deconv47.3RGBDECCV2016
LSTM-CF49.4RGBDECCV2016
CRF+RF+RFS73.8RGBDPRL2016
RDFNet-1527662.850.1RGBDICCV2017
SCN-ResNet15249.6RGBDICCV2017
RDFNet-5074.860.447.7RGBDICCV2017
CFN(RefineNet)47.7RGBDICCV2017
RefineNet-15273.658.946.5RGBCVPR2017
LSD-GF71.960.745.959.3RGBDCVPR2017
3D-GNN55.743.1RGBDICCV2017
DML-Res5040.2RGBIJCAI2017
STD2P70.153.840.155.7RGBDCVPR2017
PBR-CNN33.2RGBICCBS2017
B-SegNet6845.832.4RGBBMVC2017
FC-CRF63.13929.548.4RGBDTIP2017
LCR55.631.721.839.9RGBDICIP2017
SegNet54.130.52138.5RGBDLCRTPAMI2017
D-Refine-15274.159.547RGBICPR2018
TRL-ResNet5076.256.346.4RGBECCV2018
D-CNN56.343.9RGBDECCV2018
RGBD-Geo70.351.741.254.2RGBDMTA2018
Context7053.640.6RGBTPAMI2018
DeepLab-LFOV70.349.639.454.7RGBDSTD2PTPAMI2018
D-depth-reg66.746.334.850.6RGBDPRL2018
PU-Loop72.144.5RGBCVPR2018
C-DCNN6950.839.8RGBTNNLS2018
GAD84.868.759.6RGBCVPR2019
CTS-IM76.350.6RGBDICIP2019
PAP76.262.550.4RGBCVPR2019
KIL-ResNet10175.158.450.2RGBACPR2019
2.5D-Conv75.949.1RGBDICIP2019
ACNet48.3RGBDICIP2019
3M2RNet766348RGBDSIC2019
FDNet-16s73.960.347.4RGBAAAI2019
DMFNet74.459.346.8RGBDIEEE Access2019
MMAF-Net-15272.259.244.8RGBDarXiv2019
RTJ-AA42RGBICRA2019
JTRL-ResNet5081.360.050.3RGBTPAMI2019
3DN-Conv52.439.3RGB3DV2019
SGNet76.863.151RGBDTIP2020
SCN-ResNet10148.3RGBDTCYB2020
RefineNet-Res152-Pool474.459.647.6RGBTPAMI2020
TSNet73.559.646.1RGBDIEEE IS2020
PSD-ResNet5077.058.651.0RGBCVPR2020
Malleable 2.5D76.950.9RGBDECCV2020
BCMFP+SA-Gate77.952.4RGBDECCV2020
MTI-Net75.362.949.0RGB

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多