
多阶门控聚合网络在计算机视觉领域的创新应用
MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。
Siyuan Li<sup>*,1,2</sup>, Zedong Wang<sup>*,1</sup>, Zicheng Liu<sup>1,2</sup>, Chen Tan<sup>1,2</sup>, Haitao Lin<sup>1,2</sup>, Di Wu<sup>1,2</sup>, Zhiyuan Chen<sup>1</sup>, Jiangbin Zheng<sup>1,2</sup>, Stan Z. Li<sup>†,1</sup>
<sup>1</sup>Westlake University, <sup>2</sup>Zhejiang University
</div> <p align="center"> <a href="https://arxiv.org/abs/2211.03295" alt="arXiv"> <img src="https://img.shields.io/badge/arXiv-2211.03295-b31b1b.svg?style=flat" /></a> <a href="https://github.com/Westlake-AI/MogaNet/blob/main/LICENSE" alt="license"> <img src="https://img.shields.io/badge/license-Apache--2.0-%23B7A800" /></a> <a href="https://colab.research.google.com/github/Westlake-AI/MogaNet/blob/main/demo.ipynb" alt="Colab"> <img src="https://colab.research.google.com/assets/colab-badge.svg" /></a> <a href="https://huggingface.co/MogaNet" alt="Huggingface"> <img src="https://img.shields.io/badge/huggingface-MogaNet-blueviolet" /></a> </p> <p align="center"> <img src="https://user-images.githubusercontent.com/44519745/202308950-00708e25-9ac7-48f0-af12-224d927ac1ae.jpg" width=100% height=100% class="center"> </p>We propose MogaNet, a new family of efficient ConvNets designed through the lens of multi-order game-theoretic interaction, to pursue informative context mining with preferable complexity-performance trade-offs. It shows excellent scalability and attains competitive results among state-of-the-art models with more efficient use of model parameters on ImageNet and multifarious typical vision benchmarks, including COCO object detection, ADE20K semantic segmentation, 2D&3D human pose estimation, and video prediction.
This repository contains PyTorch implementation for MogaNet (ICLR 2024).
<details> <summary>Table of Contents</summary> <ol> <li><a href="#catalog">Catalog</a></li> <li><a href="#image-classification">Image Classification</a></li> <li><a href="#license">License</a></li> <li><a href="#acknowledgement">Acknowledgement</a></li> <li><a href="#citation">Citation</a></li> </ol> </details>We plan to release implementations of MogaNet in a few months. Please watch us for the latest release. Currently, this repo is reimplemented according to our official implementations in OpenMixup, and we are working on cleaning up experimental results and code implementations. Models are released in GitHub / Baidu Cloud / Hugging Face.
Please check INSTALL.md for installation instructions.
See TRAINING.md for ImageNet-1K training and validation instructions, or refer to our OpenMixup implementations. We released pre-trained models on OpenMixup in moganet-in1k-weights. We have also reproduced ImageNet results with this repo and released args.yaml / summary.csv / model.pth.tar in moganet-in1k-weights. The parameters in the trained model can be extracted by code.
Here is a notebook demo of MogaNet which run the steps to perform inference with MogaNet for image classification.
| Model | Resolution | Params (M) | Flops (G) | Top-1 / top-5 (%) | Script | Download |
|---|---|---|---|---|---|---|
| MogaNet-XT | 224x224 | 2.97 | 0.80 | 76.5 | 93.4 | args | script | model | log |
| MogaNet-XT | 256x256 | 2.97 | 1.04 | 77.2 | 93.8 | args | script | model | log |
| MogaNet-T | 224x224 | 5.20 | 1.10 | 79.0 | 94.6 | args | script | model | log |
| MogaNet-T | 256x256 | 5.20 | 1.44 | 79.6 | 94.9 | args | script | model | log |
| MogaNet-T* | 256x256 | 5.20 | 1.44 | 80.0 | 95.0 | config | script | model | log |
| MogaNet-S | 224x224 | 25.3 | 4.97 | 83.4 | 96.9 | args | script | model | log |
| MogaNet-B | 224x224 | 43.9 | 9.93 | 84.3 | 97.0 | args | script | model | log |
| MogaNet-L | 224x224 | 82.5 | 15.9 | 84.7 | 97.1 | args | script | model | log |
| MogaNet-XL | 224x224 | 180.8 | 34.5 | 85.1 | 97.4 | args | script | model | log |
(1) The code to count MACs of MogaNet variants.
python get_flops.py --model moganet_tiny
<p align="center">
<img src="https://user-images.githubusercontent.com/44519745/212429257-f0b09d7a-7503-4945-9517-68ea36d10e00.png" width=100% height=100%
class="center">
</p>
(2) The code to visualize Grad-CAM activation maps (or variants of Grad-CAM) of MogaNet and other popular architectures.
python cam_image.py --use_cuda --image_path /path/to/image.JPEG --model moganet_tiny --method gradcam
<p align="right">(<a href="#top">back to top</a>)</p>
| Method | Backbone | Pretrain | Params | FLOPs | Lr schd | box mAP | mask mAP | Config | Download |
|---|---|---|---|---|---|---|---|---|---|
| Mask R-CNN | MogaNet-XT | ImageNet-1K | 22.8M | 185.4G | 1x | 40.7 | 37.6 | config | log / model |
| Mask R-CNN | MogaNet-T | ImageNet-1K | 25.0M | 191.7G | 1x | 42.6 | 39.1 | config |


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号