
多阶门控聚合网络在计算机视觉领域的创新应用
MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。
Siyuan Li<sup>*,1,2</sup>, Zedong Wang<sup>*,1</sup>, Zicheng Liu<sup>1,2</sup>, Chen Tan<sup>1,2</sup>, Haitao Lin<sup>1,2</sup>, Di Wu<sup>1,2</sup>, Zhiyuan Chen<sup>1</sup>, Jiangbin Zheng<sup>1,2</sup>, Stan Z. Li<sup>†,1</sup>
<sup>1</sup>Westlake University, <sup>2</sup>Zhejiang University
</div> <p align="center"> <a href="https://arxiv.org/abs/2211.03295" alt="arXiv"> <img src="https://img.shields.io/badge/arXiv-2211.03295-b31b1b.svg?style=flat" /></a> <a href="https://github.com/Westlake-AI/MogaNet/blob/main/LICENSE" alt="license"> <img src="https://img.shields.io/badge/license-Apache--2.0-%23B7A800" /></a> <a href="https://colab.research.google.com/github/Westlake-AI/MogaNet/blob/main/demo.ipynb" alt="Colab"> <img src="https://colab.research.google.com/assets/colab-badge.svg" /></a> <a href="https://huggingface.co/MogaNet" alt="Huggingface"> <img src="https://img.shields.io/badge/huggingface-MogaNet-blueviolet" /></a> </p> <p align="center"> <img src="https://user-images.githubusercontent.com/44519745/202308950-00708e25-9ac7-48f0-af12-224d927ac1ae.jpg" width=100% height=100% class="center"> </p>We propose MogaNet, a new family of efficient ConvNets designed through the lens of multi-order game-theoretic interaction, to pursue informative context mining with preferable complexity-performance trade-offs. It shows excellent scalability and attains competitive results among state-of-the-art models with more efficient use of model parameters on ImageNet and multifarious typical vision benchmarks, including COCO object detection, ADE20K semantic segmentation, 2D&3D human pose estimation, and video prediction.
This repository contains PyTorch implementation for MogaNet (ICLR 2024).
<details> <summary>Table of Contents</summary> <ol> <li><a href="#catalog">Catalog</a></li> <li><a href="#image-classification">Image Classification</a></li> <li><a href="#license">License</a></li> <li><a href="#acknowledgement">Acknowledgement</a></li> <li><a href="#citation">Citation</a></li> </ol> </details>We plan to release implementations of MogaNet in a few months. Please watch us for the latest release. Currently, this repo is reimplemented according to our official implementations in OpenMixup, and we are working on cleaning up experimental results and code implementations. Models are released in GitHub / Baidu Cloud / Hugging Face.
Please check INSTALL.md for installation instructions.
See TRAINING.md for ImageNet-1K training and validation instructions, or refer to our OpenMixup implementations. We released pre-trained models on OpenMixup in moganet-in1k-weights. We have also reproduced ImageNet results with this repo and released args.yaml / summary.csv / model.pth.tar in moganet-in1k-weights. The parameters in the trained model can be extracted by code.
Here is a notebook demo of MogaNet which run the steps to perform inference with MogaNet for image classification.
| Model | Resolution | Params (M) | Flops (G) | Top-1 / top-5 (%) | Script | Download |
|---|---|---|---|---|---|---|
| MogaNet-XT | 224x224 | 2.97 | 0.80 | 76.5 | 93.4 | args | script | model | log |
| MogaNet-XT | 256x256 | 2.97 | 1.04 | 77.2 | 93.8 | args | script | model | log |
| MogaNet-T | 224x224 | 5.20 | 1.10 | 79.0 | 94.6 | args | script | model | log |
| MogaNet-T | 256x256 | 5.20 | 1.44 | 79.6 | 94.9 | args | script | model | log |
| MogaNet-T* | 256x256 | 5.20 | 1.44 | 80.0 | 95.0 | config | script | model | log |
| MogaNet-S | 224x224 | 25.3 | 4.97 | 83.4 | 96.9 | args | script | model | log |
| MogaNet-B | 224x224 | 43.9 | 9.93 | 84.3 | 97.0 | args | script | model | log |
| MogaNet-L | 224x224 | 82.5 | 15.9 | 84.7 | 97.1 | args | script | model | log |
| MogaNet-XL | 224x224 | 180.8 | 34.5 | 85.1 | 97.4 | args | script | model | log |
(1) The code to count MACs of MogaNet variants.
python get_flops.py --model moganet_tiny
<p align="center">
<img src="https://user-images.githubusercontent.com/44519745/212429257-f0b09d7a-7503-4945-9517-68ea36d10e00.png" width=100% height=100%
class="center">
</p>
(2) The code to visualize Grad-CAM activation maps (or variants of Grad-CAM) of MogaNet and other popular architectures.
python cam_image.py --use_cuda --image_path /path/to/image.JPEG --model moganet_tiny --method gradcam
<p align="right">(<a href="#top">back to top</a>)</p>
| Method | Backbone | Pretrain | Params | FLOPs | Lr schd | box mAP | mask mAP | Config | Download |
|---|---|---|---|---|---|---|---|---|---|
| Mask R-CNN | MogaNet-XT | ImageNet-1K | 22.8M | 185.4G | 1x | 40.7 | 37.6 | config | log / model |
| Mask R-CNN | MogaNet-T | ImageNet-1K | 25.0M | 191.7G | 1x | 42.6 | 39.1 | config |


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款 超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号