vlt5-base-keywords

vlt5-base-keywords

关键词生成与提取的先进模型

vlT5是一款基于Transformers架构的关键词生成模型,专门针对科学文章的摘要和标题进行训练,适用于各类文本的关键词提取。该模型在多领域表现优异,能从短文本中生成描述内容的关键短语。虽然结果并不总是完整,但仍具实用性,适合应用于研究和技术项目。使用POSMAC数据集进行训练,展现出强大的迁移能力,支持多语言环境,包括英语和波兰语。访问在线演示了解其应用与优化的详细信息。

关键词生成vlT5HuggingfaceGithub科学文章语料库开源项目模型POSMAC编码器-解码器架构

vlt5-base-keywords项目介绍

vlt5-base-keywords项目是一个关键词生成模型,基于Google提出的Transformer编码-解码架构(https://huggingface.co/t5-base),旨在通过科学文章的摘要和标题的结合,预测出一组关键短语。这个模型特别之处在于,它能够根据文章的摘要生成精准但并不总是全面的关键短语。

项目背景与目标

vlT5模型是一个关键词生成模型,专为从短文本中提取关键字而设计。关键词生成在自然语言处理领域具有广泛应用,因为它能够有效识别和总结文本的重点信息。vlt5-base-keywords模型以科学文章文本为训练语料,主要用于预测给定文本的关键短语集合。尽管仅根据文章的摘要生成,模型输出的关键短语依然保持高精确度。

vlT5的优点与局限

vlT5模型最大的优点在于其可迁移性,能够适用于各种领域和类型的文本。然而,该模型的文本长度与生成的关键词数量与训练数据相近,对于摘要长度的文本可生成约3到5个关键词。对于较长的文本,需要拆分成较小的片段后输入模型进行处理。

语言与数据集

  • 语言模型: t5-base
  • 支持语言: 波兰语(pl)、英语(en),并在其他语言上表现较好。
  • 训练数据: POSMAC,波兰语公开科学元数据集合,共涵盖216,214篇科学文章的摘要。

使用方法

项目提供了一个Python代码示例,展示了如何使用该模型和T5Tokenizer进行关键词预测:

from transformers import T5Tokenizer, T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords") tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords") task_prefix = "Keywords: " inputs = [ "Christina Katrakis, who spoke to the BBC from Vorokhta in western Ukraine, relays the account of one family, who say Russian soldiers shot at their vehicles while they were leaving their village near Chernobyl in northern Ukraine. She says the cars had white flags and signs saying they were carrying children.", "Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.", "Hello, I'd like to order a pizza with salami topping.", ] for sample in inputs: input_sequences = [task_prefix + sample] input_ids = tokenizer( input_sequences, return_tensors="pt", truncation=True ).input_ids output = model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4) predicted = tokenizer.decode(output[0], skip_special_tokens=True) print(sample, "\n --->", predicted)

结果展示

模型采用评估指标强调生成结果的精确度(Precision)、召回率(Recall)和F1得分。在表格中比较了多种方法下的表现,其中vlT5kw在多个指标上表现优异。

许可证与引用

该模型采用CC BY 4.0许可协议。如需引用此模型,请参考以下论文:

团队与联系

该模型由Voicelab.ai的自然语言处理研究团队训练开发。如需联系,可以访问这里

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多