torchinfo

torchinfo

高级模型结构查看工具,适用于PyTorch

Torchinfo 提供了类似 TensorFlow `model.summary()` API 的功能,可视化和调试 PyTorch 模型。支持包括 RNN 和 LSTM 在内的多种层,并返回 ModelStatistics 对象。项目拥有简洁界面、多种自定义选项和详细文档,适用于 Jupyter Notebook 和 Google Colab,且经过综合单元测试和代码覆盖测试验证。

torchinfoPyTorchmodel summaryTensorflowAPIGithub开源项目

项目介绍

torchinfo 是一个专为 PyTorch 模型用户开发的工具,用于提供丰富的模型总结信息。其功能类似于 TensorFlow 的 model.summary() API,可以帮助用户在调试神经网络时查看模型的可视化信息。torchinfo 提供的功能比简单的 print(your_model) 更为全面,因而成为用户了解和调试其网络架构的得力助手。

项目背景

torchinfo 是对原始项目 torchsummary 和 torchsummaryX 的重写,解决了这两个项目遗留的问题,提供了全新的 API。此项目与 PyTorch 版本 1.4.0 及以上兼容,支持 Python 3.8 及更新版本。

核心功能

torchinfo 通过一个简单的接口,帮助用户轻松获取 PyTorch 模型的详尽信息。用户可以通过以下任意一种安装方式来获取此工具:

pip install torchinfo

或使用 conda 安装:

conda install -c conda-forge torchinfo

使用示例

使用 torchinfo 非常简单,只需如下几行代码即可获得模型的详细信息:

from torchinfo import summary model = ConvNet() batch_size = 16 summary(model, input_size=(batch_size, 1, 28, 28))

这段代码将会输出模型的层次结构、每层的输入和输出形状、参数数量等信息。

支持的功能

  • 支持 RNNs, LSTMs 及其他递归层的总结。
  • 可视化分支输出,帮助探索指定深度的模型层次。
  • 提供 ModelStatistics 对象,其中包含所有总结数据字段。
  • 支持在 Jupyter Notebook 和 Google Colab 环境中的使用。

新增特性

  • 详细模式:显示权重和偏置层的详细信息。
  • 灵活接受输入数据或者仅输入形状。
  • 可自定义行列宽度以及批次维度。

示例代码

用户可以通过不同配置选项探索模型的总结信息。例如,下面展示了一种使用 LSTM 网络进行总结的方式:

class LSTMNet(nn.Module): def __init__(self, vocab_size=20, embed_dim=300, hidden_dim=512, num_layers=2): super().__init__() self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embed_dim) self.encoder = nn.LSTM(embed_dim, hidden_dim, num_layers=num_layers, batch_first=True) self.decoder = nn.Linear(hidden_dim, vocab_size) def forward(self, x): embed = self.embedding(x) out, hidden = self.encoder(embed) out = self.decoder(out) out = out.view(-1, out.size(2)) return out, hidden summary( LSTMNet(), (1, 100), dtypes=[torch.long], verbose=2, col_width=16, col_names=["kernel_size", "output_size", "num_params", "mult_adds"], row_settings=["var_names"], )

贡献与支持

torchinfo 的开发者欢迎社区参与到项目的开发中来,无论是通过提交问题或者拉取请求。项目的开发基于最新版的 Python,并确保向下兼容到 Python 3.8。贡献者可以使用下面的几行命令来准备开发环境:

  • 安装开发依赖包:
    pip install -r requirements-dev.txt
  • 使用 pre-commit 进行自动格式化:
    pre-commit install
  • 运行单元测试:
    pytest

感谢任何能够帮助改进、测试和增强这个项目功能的社区贡献者。

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
下拉加载更多