bert_score

bert_score

先进的自然语言生成评估工具

BERTScore是一种创新的自然语言生成评估工具,基于BERT预训练模型的上下文嵌入技术。它通过计算候选句和参考句中单词的余弦相似度,得出精确度、召回率和F1分数。研究表明,BERTScore在句子级和系统级评估中与人工判断具有高度相关性。该项目支持130多种预训练模型,适用于多种语言的文本生成评估。BERTScore提供Python接口和命令行工具,操作简便,是自然语言处理领域的有力辅助工具。

BERTScore自然语言处理文本生成评估预训练模型机器学习Github开源项目

BERTScore

made-with-python arxiv PyPI version bert-score Downloads Downloads License: MIT Code style: black

Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). We now support about 130 models (see this spreadsheet for their correlations with human evaluation). Currently, the best model is microsoft/deberta-xlarge-mnli, please consider using it instead of the default roberta-large in order to have the best correlation with human evaluation.

News:

<!-- - Features to appear in the next version (currently in the master branch): -->
  • Updated to version 0.3.13

    • Fix bug with transformers version > 4.17.0 (#148)
  • Updated to version 0.3.12

    • Having get_idf_dict compatible with DDP (#140)
    • Fix setup bug (#138)
  • Updated to version 0.3.11

    • Support 6 DeBERTa v3 models
    • Support 3 ByT5 models
  • Updated to version 0.3.10

    • Support 8 SimCSE models
    • Fix the support of scibert (to be compatible with transformers >= 4.0.0)
    • Add scripts for reproducing some results in our paper (See this folder)
    • Support fast tokenizers in huggingface transformers with --use_fast_tokenizer. Notably, you will get different scores because of the difference in the tokenizer implementations (#106).
    • Fix non-zero recall problem for empty candidate strings (#107).
    • Add Turkish BERT Supoort (#108).
  • Updated to version 0.3.9

    • Support 3 BigBird models
    • Fix bugs for mBART and T5
    • Support 4 mT5 models as requested (#93)
  • Updated to version 0.3.8

    • Support 53 new pretrained models including BART, mBART, BORT, DeBERTa, T5, BERTweet, MPNet, ConvBERT, SqueezeBERT, SpanBERT, PEGASUS, Longformer, LED, Blendbot, etc. Among them, DeBERTa achives higher correlation with human scores than RoBERTa (our default) on WMT16 dataset. The correlations are presented in this Google sheet.
    • Please consider using --model_type microsoft/deberta-xlarge-mnli or --model_type microsoft/deberta-large-mnli (faster) if you want the scores to correlate better with human scores.
    • Add baseline files for DeBERTa models.
    • Add example code to generate baseline files (please see the details).
  • Updated to version 0.3.7

    • Being compatible with Huggingface's transformers version >=4.0.0. Thanks to public contributers (#84, #85, #86).
  • See #22 if you want to replicate our experiments on the COCO Captioning dataset.

  • For people in China, downloading pre-trained weights can be very slow. We provide copies of a few models on Baidu Pan.

  • Huggingface's datasets library includes BERTScore in their metric collection.

<details><summary>Previous updates</summary><p>
  • Updated to version 0.3.6
    • Support custom baseline files #74
    • The option --rescale-with-baseline is changed to --rescale_with_baseline so that it is consistent with other options.
  • Updated to version 0.3.5
    • Being compatible with Huggingface's transformers >=v3.0.0 and minor fixes (#58, #66, #68)
    • Several improvements related to efficency (#67, #69)
  • Updated to version 0.3.4
    • Compatible with transformers v2.11.0 now (#58)
  • Updated to version 0.3.3
    • Fixing the bug with empty strings issue #47.
    • Supporting 6 ELECTRA models and 24 smaller BERT models.
    • A new Google sheet for keeping the performance (i.e., pearson correlation with human judgment) of different models on WMT16 to-English.
    • Including the script for tuning the best number of layers of an English pre-trained model on WMT16 to-English data (See the details).
  • Updated to version 0.3.2
    • Bug fixed: fixing the bug in v0.3.1 when having multiple reference sentences.
    • Supporting multiple reference sentences with our command line tool.
  • Updated to version 0.3.1
    • A new BERTScorer object that caches the model to avoid re-loading it multiple times. Please see our jupyter notebook example for the usage.
    • Supporting multiple reference sentences for each example. The score function now can take a list of lists of strings as the references and return the score between the candidate sentence and its closest reference sentence.
</p></details>

Please see release logs for older updates.

Authors:

*: Equal Contribution

Overview

BERTScore leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity. It has been shown to correlate with human judgment on sentence-level and system-level evaluation. Moreover, BERTScore computes precision, recall, and F1 measure, which can be useful for evaluating different language generation tasks.

For an illustration, BERTScore recall can be computed as

If you find this repo useful, please cite:

@inproceedings{bert-score,
  title={BERTScore: Evaluating Text Generation with BERT},
  author={Tianyi Zhang* and Varsha Kishore* and Felix Wu* and Kilian Q. Weinberger and Yoav Artzi},
  booktitle={International Conference on Learning Representations},
  year={2020},
  url={https://openreview.net/forum?id=SkeHuCVFDr}
}

Installation

  • Python version >= 3.6
  • PyTorch version >= 1.0.0

Install from pypi with pip by

pip install bert-score

Install latest unstable version from the master branch on Github by:

pip install git+https://github.com/Tiiiger/bert_score

Install it from the source by:

git clone https://github.com/Tiiiger/bert_score cd bert_score pip install .

and you may test your installation by:

python -m unittest discover

Usage

Python Function

On a high level, we provide a python function bert_score.score and a python object bert_score.BERTScorer. The function provides all the supported features while the scorer object caches the BERT model to faciliate multiple evaluations. Check our demo to see how to use these two interfaces. Please refer to bert_score/score.py for implementation details.

Running BERTScore can be computationally intensive (because it uses BERT :p). Therefore, a GPU is usually necessary. If you don't have access to a GPU, you can try our demo on Google Colab

Command Line Interface (CLI)

We provide a command line interface (CLI) of BERTScore as well as a python module. For the CLI, you can use it as follows:

  1. To evaluate English text files:

We provide example inputs under ./example.

bert-score -r example/refs.txt -c example/hyps.txt --lang en

You will get the following output at the end:

roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0) P: 0.957378 R: 0.961325 F1: 0.959333

where "roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0)" is the hash code.

Starting from version 0.3.0, we support rescaling the scores with baseline scores

bert-score -r example/refs.txt -c example/hyps.txt --lang en --rescale_with_baseline

You will get:

roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0)-rescaled P: 0.747044 R: 0.770484 F1: 0.759045

This makes the range of the scores larger and more human-readable. Please see this post for details.

When having multiple reference sentences, please use

bert-score -r example/refs.txt example/refs2.txt -c example/hyps.txt --lang en

where the -r argument supports an arbitrary number of reference files. Each reference file should have the same number of lines as your candidate/hypothesis file. The i-th line in each reference file corresponds to the i-th line in the candidate file.

  1. To evaluate text files in other languages:

We currently support the 104 languages in multilingual BERT (full list).

Please specify the two-letter abbreviation of the language. For instance, using --lang zh for Chinese text.

See more options by bert-score -h.

  1. To load your own custom model: Please specify the path to the model and the number of layers to use by --model and --num_layers.
bert-score -r example/refs.txt -c example/hyps.txt --model path_to_my_bert --num_layers 9
  1. To visualize matching scores:
bert-score-show --lang en -r "There are two bananas on the table." -c "On the table are two apples." -f out.png

The figure will be saved to out.png.

  1. If you see the following message while using BERTScore, please ignore it. This is expected.
Some weights of the model checkpoint at roberta-large were not used when initializing RobertaModel: ['lm_head.decoder.weight', 'lm_head.layer_norm.weight', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.bias', 'lm_head.dense.weight']
- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).

Practical Tips

  • Report the hash code (e.g., roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0)-rescaled) in your paper so that people know what setting you use. This is inspired by sacreBLEU. Changes in huggingface's transformers version may also affect the score (See issue #46).
  • Unlike BERT, RoBERTa uses GPT2-style tokenizer which creates addition " " tokens when there are multiple spaces appearing together. It is recommended to remove addition spaces by sent = re.sub(r' +', ' ', sent) or sent = re.sub(r'\s+', ' ', sent).
  • Using inverse document frequency (idf) on the reference sentences to weigh word importance may correlate better with human judgment. However, when the set of reference sentences become too small, the idf score would become inaccurate/invalid. We now make it optional. To use idf, please set --idf when using the CLI tool or idf=True when calling bert_score.score function.
  • When you are low on GPU memory, consider setting batch_size when calling bert_score.score function.
  • To use a particular model please set -m MODEL_TYPE when using the CLI tool or model_type=MODEL_TYPE when calling bert_score.score function.
  • We tune layer to use based on WMT16 metric evaluation dataset. You may use a different layer by setting -l LAYER or num_layers=LAYER. To tune the best layer for your custom model, please follow the instructions in tune_layers folder.
  • Limitation: Because BERT, RoBERTa, and XLM with learned positional embeddings are pre-trained on sentences with max length 512, BERTScore is undefined between sentences longer than 510 (512 after adding [CLS] and [SEP] tokens). The sentences longer than this will be truncated. Please consider using XLNet which can support much longer inputs.

Default Behavior

Default Model

LanguageModel
enroberta-large
en-sciallenai/scibert_scivocab_uncased
zhbert-base-chinese
trdbmdz/bert-base-turkish-cased
othersbert-base-multilingual-cased

Default Layers

Please see this Google sheet for the supported models and their performance.

Acknowledgement

This repo wouldn't be possible without the awesome bert, fairseq, and

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多