simpletransformers

simpletransformers

快速构建和优化Transformer模型的开源工具

simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。

Simple TransformersNLPHugging Face机器学习深度学习Github开源项目

License Downloads

<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->

All Contributors

<!-- ALL-CONTRIBUTORS-BADGE:END -->

Simple Transformers

This library is based on the Transformers library by HuggingFace. Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model.

Supported Tasks:

  • Information Retrieval (Dense Retrieval)
  • (Large) Language Models (Training, Fine-tuning, and Generation)
  • Encoder Model Training and Fine-tuning
  • Sequence Classification
  • Token Classification (NER)
  • Question Answering
  • Language Generation
  • T5 Model
  • Seq2Seq Tasks
  • Multi-Modal Classification
  • Conversational AI.

Table of contents

<!--ts--> <!--te-->

Setup

With Conda

  1. Install Anaconda or Miniconda Package Manager from here
  2. Create a new virtual environment and install packages.
$ conda create -n st python pandas tqdm $ conda activate st

Using Cuda:

$ conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch

Without using Cuda

$ conda install pytorch cpuonly -c pytorch
  1. Install simpletransformers.
$ pip install simpletransformers

Optional

  1. Install Weights and Biases (wandb) for tracking and visualizing training in a web browser.
$ pip install wandb

Usage

All documentation is now live at simpletransformers.ai

Simple Transformer models are built with a particular Natural Language Processing (NLP) task in mind. Each such model comes equipped with features and functionality designed to best fit the task that they are intended to perform. The high-level process of using Simple Transformers models follows the same pattern.

  1. Initialize a task-specific model
  2. Train the model with train_model()
  3. Evaluate the model with eval_model()
  4. Make predictions on (unlabelled) data with predict()

However, there are necessary differences between the different models to ensure that they are well suited for their intended task. The key differences will typically be the differences in input/output data formats and any task specific features/configuration options. These can all be found in the documentation section for each task.

The currently implemented task-specific Simple Transformer models, along with their task, are given below.

TaskModel
Binary and multi-class text classificationClassificationModel
Conversational AI (chatbot training)ConvAIModel
Language generationLanguageGenerationModel
Language model training/fine-tuningLanguageModelingModel
Multi-label text classificationMultiLabelClassificationModel
Multi-modal classification (text and image data combined)MultiModalClassificationModel
Named entity recognitionNERModel
Question answeringQuestionAnsweringModel
RegressionClassificationModel
Sentence-pair classificationClassificationModel
Text Representation GenerationRepresentationModel
Document RetrievalRetrievalModel
  • Please refer to the relevant section in the docs for more information on how to use these models.
  • Example scripts can be found in the examples directory.
  • See the Changelog for up-to-date changes to the project.

A quick example

from simpletransformers.classification import ClassificationModel, ClassificationArgs import pandas as pd import logging logging.basicConfig(level=logging.INFO) transformers_logger = logging.getLogger("transformers") transformers_logger.setLevel(logging.WARNING) # Preparing train data train_data = [ ["Aragorn was the heir of Isildur", 1], ["Frodo was the heir of Isildur", 0], ] train_df = pd.DataFrame(train_data) train_df.columns = ["text", "labels"] # Preparing eval data eval_data = [ ["Theoden was the king of Rohan", 1], ["Merry was the king of Rohan", 0], ] eval_df = pd.DataFrame(eval_data) eval_df.columns = ["text", "labels"] # Optional model configuration model_args = ClassificationArgs(num_train_epochs=1) # Create a ClassificationModel model = ClassificationModel( "roberta", "roberta-base", args=model_args ) # Train the model model.train_model(train_df) # Evaluate the model result, model_outputs, wrong_predictions = model.eval_model(eval_df) # Make predictions with the model predictions, raw_outputs = model.predict(["Sam was a Wizard"])

Experiment Tracking with Weights and Biases

  • Weights and Biases makes it incredibly easy to keep track of all your experiments. Check it out on Colab here: Open In Colab

Current Pretrained Models

For a list of pretrained models, see Hugging Face docs.

The model_types available for each task can be found under their respective section. Any pretrained model of that type found in the Hugging Face docs should work. To use any of them set the correct model_type and model_name in the args dictionary.


Contributors ✨

Thanks goes to these wonderful people (emoji key):

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center"><a href="https://github.com/hawktang"><img src="https://avatars0.githubusercontent.com/u/2004071?v=4?s=100" width="100px;" alt=""/><br /><sub><b>hawktang</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hawktang" title="Code">💻</a></td> <td align="center"><a href="http://datawizzards.io"><img src="https://avatars0.githubusercontent.com/u/22409996?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Mabu Manaileng</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mabu-dev" title="Code">💻</a></td> <td align="center"><a href="https://www.facebook.com/aliosm97"><img src="https://avatars3.githubusercontent.com/u/7662492?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Ali Hamdi Ali Fadel</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=AliOsm" title="Code">💻</a></td> <td align="center"><a href="http://tovly.co"><img src="https://avatars0.githubusercontent.com/u/12242351?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Tovly Deutsch</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=TovlyDeutsch" title="Code">💻</a></td> <td align="center"><a href="https://github.com/hlo-world"><img src="https://avatars0.githubusercontent.com/u/9633055?v=4?s=100" width="100px;" alt=""/><br /><sub><b>hlo-world</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hlo-world" title="Code">💻</a></td> <td align="center"><a href="https://github.com/huntertl"><img src="https://avatars1.githubusercontent.com/u/15113885?v=4?s=100" width="100px;" alt=""/><br /><sub><b>huntertl</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=huntertl" title="Code">💻</a></td> <td align="center"><a href="https://whattheshot.com"><img src="https://avatars2.githubusercontent.com/u/623763?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Yann Defretin</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=kinoute" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=kinoute" title="Documentation">📖</a> <a href="#question-kinoute" title="Answering Questions">💬</a> <a href="#ideas-kinoute" title="Ideas, Planning, & Feedback">🤔</a></td> </tr> <tr> <td align="center"><a href="https://github.com/mananeau"><img src="https://avatars0.githubusercontent.com/u/29440170?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Manuel </b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mananeau" title="Documentation">📖</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mananeau" title="Code">💻</a></td> <td align="center"><a href="http://jacobsgill.es"><img src="https://avatars2.githubusercontent.com/u/9109832?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Gilles Jacobs</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=GillesJ" title="Documentation">📖</a></td> <td align="center"><a href="https://github.com/shasha79"><img src="https://avatars2.githubusercontent.com/u/5512649?v=4?s=100" width="100px;" alt=""/><br /><sub><b>shasha79</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=shasha79" title="Code">💻</a></td> <td align="center"><a href="http://www-lium.univ-lemans.fr/~garcia"><img src="https://avatars2.githubusercontent.com/u/14233427?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Mercedes Garcia</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=merc85garcia" title="Code">💻</a></td> <td align="center"><a href="https://github.com/hammad26"><img src="https://avatars1.githubusercontent.com/u/12643784?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Hammad Hassan Tarar</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hammad26" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hammad26" title="Documentation">📖</a></td> <td align="center"><a href="https://github.com/todd-cook"><img src="https://avatars3.githubusercontent.com/u/665389?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Todd Cook</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=todd-cook" title="Code">💻</a></td> <td align="center"><a href="http://knuthellan.com/"><img src="https://avatars2.githubusercontent.com/u/51441?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Knut O. Hellan</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=khellan" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=khellan" title="Documentation">📖</a></td> </tr> <tr> <td align="center"><a href="https://github.com/nagenshukla"><img src="https://avatars0.githubusercontent.com/u/39196228?v=4?s=100" width="100px;" alt=""/><br /><sub><b>nagenshukla</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=nagenshukla" title="Code">💻</a></td> <td align="center"><a href="https://www.linkedin.com/in/flaviussn/"><img src="https://avatars0.githubusercontent.com/u/20523032?v=4?s=100" width="100px;" alt=""/><br /><sub><b>flaviussn</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=flaviussn" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=flaviussn" title="Documentation">📖</a></td> <td align="center"><a href="http://marctorrellas.github.com"><img src="https://avatars1.githubusercontent.com/u/22045779?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Marc Torrellas</b></sub></a><br /><a href="#maintenance-marctorrellas" title="Maintenance">🚧</a></td> <td align="center"><a href="https://github.com/adrienrenaud"><img src="https://avatars3.githubusercontent.com/u/6208157?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Adrien Renaud</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=adrienrenaud" title="Code">💻</a></td> <td align="center"><a href="https://github.com/jacky18008"><img src="https://avatars0.githubusercontent.com/u/9031441?v=4?s=100" width="100px;" alt=""/><br /><sub><b>jacky18008</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=jacky18008" title="Code">💻</a></td> <td align="center"><a href="https://github.com/seo-95"><img src="https://avatars0.githubusercontent.com/u/38254541?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Matteo Senese</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=seo-95" title="Code">💻</a></td> <td

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多