simpletransformers

simpletransformers

快速构建和优化Transformer模型的开源工具

simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。

Simple TransformersNLPHugging Face机器学习深度学习Github开源项目

License Downloads

<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->

All Contributors

<!-- ALL-CONTRIBUTORS-BADGE:END -->

Simple Transformers

This library is based on the Transformers library by HuggingFace. Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model.

Supported Tasks:

  • Information Retrieval (Dense Retrieval)
  • (Large) Language Models (Training, Fine-tuning, and Generation)
  • Encoder Model Training and Fine-tuning
  • Sequence Classification
  • Token Classification (NER)
  • Question Answering
  • Language Generation
  • T5 Model
  • Seq2Seq Tasks
  • Multi-Modal Classification
  • Conversational AI.

Table of contents

<!--ts--> <!--te-->

Setup

With Conda

  1. Install Anaconda or Miniconda Package Manager from here
  2. Create a new virtual environment and install packages.
$ conda create -n st python pandas tqdm $ conda activate st

Using Cuda:

$ conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch

Without using Cuda

$ conda install pytorch cpuonly -c pytorch
  1. Install simpletransformers.
$ pip install simpletransformers

Optional

  1. Install Weights and Biases (wandb) for tracking and visualizing training in a web browser.
$ pip install wandb

Usage

All documentation is now live at simpletransformers.ai

Simple Transformer models are built with a particular Natural Language Processing (NLP) task in mind. Each such model comes equipped with features and functionality designed to best fit the task that they are intended to perform. The high-level process of using Simple Transformers models follows the same pattern.

  1. Initialize a task-specific model
  2. Train the model with train_model()
  3. Evaluate the model with eval_model()
  4. Make predictions on (unlabelled) data with predict()

However, there are necessary differences between the different models to ensure that they are well suited for their intended task. The key differences will typically be the differences in input/output data formats and any task specific features/configuration options. These can all be found in the documentation section for each task.

The currently implemented task-specific Simple Transformer models, along with their task, are given below.

TaskModel
Binary and multi-class text classificationClassificationModel
Conversational AI (chatbot training)ConvAIModel
Language generationLanguageGenerationModel
Language model training/fine-tuningLanguageModelingModel
Multi-label text classificationMultiLabelClassificationModel
Multi-modal classification (text and image data combined)MultiModalClassificationModel
Named entity recognitionNERModel
Question answeringQuestionAnsweringModel
RegressionClassificationModel
Sentence-pair classificationClassificationModel
Text Representation GenerationRepresentationModel
Document RetrievalRetrievalModel
  • Please refer to the relevant section in the docs for more information on how to use these models.
  • Example scripts can be found in the examples directory.
  • See the Changelog for up-to-date changes to the project.

A quick example

from simpletransformers.classification import ClassificationModel, ClassificationArgs import pandas as pd import logging logging.basicConfig(level=logging.INFO) transformers_logger = logging.getLogger("transformers") transformers_logger.setLevel(logging.WARNING) # Preparing train data train_data = [ ["Aragorn was the heir of Isildur", 1], ["Frodo was the heir of Isildur", 0], ] train_df = pd.DataFrame(train_data) train_df.columns = ["text", "labels"] # Preparing eval data eval_data = [ ["Theoden was the king of Rohan", 1], ["Merry was the king of Rohan", 0], ] eval_df = pd.DataFrame(eval_data) eval_df.columns = ["text", "labels"] # Optional model configuration model_args = ClassificationArgs(num_train_epochs=1) # Create a ClassificationModel model = ClassificationModel( "roberta", "roberta-base", args=model_args ) # Train the model model.train_model(train_df) # Evaluate the model result, model_outputs, wrong_predictions = model.eval_model(eval_df) # Make predictions with the model predictions, raw_outputs = model.predict(["Sam was a Wizard"])

Experiment Tracking with Weights and Biases

  • Weights and Biases makes it incredibly easy to keep track of all your experiments. Check it out on Colab here: Open In Colab

Current Pretrained Models

For a list of pretrained models, see Hugging Face docs.

The model_types available for each task can be found under their respective section. Any pretrained model of that type found in the Hugging Face docs should work. To use any of them set the correct model_type and model_name in the args dictionary.


Contributors ✨

Thanks goes to these wonderful people (emoji key):

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center"><a href="https://github.com/hawktang"><img src="https://avatars0.githubusercontent.com/u/2004071?v=4?s=100" width="100px;" alt=""/><br /><sub><b>hawktang</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hawktang" title="Code">💻</a></td> <td align="center"><a href="http://datawizzards.io"><img src="https://avatars0.githubusercontent.com/u/22409996?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Mabu Manaileng</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mabu-dev" title="Code">💻</a></td> <td align="center"><a href="https://www.facebook.com/aliosm97"><img src="https://avatars3.githubusercontent.com/u/7662492?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Ali Hamdi Ali Fadel</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=AliOsm" title="Code">💻</a></td> <td align="center"><a href="http://tovly.co"><img src="https://avatars0.githubusercontent.com/u/12242351?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Tovly Deutsch</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=TovlyDeutsch" title="Code">💻</a></td> <td align="center"><a href="https://github.com/hlo-world"><img src="https://avatars0.githubusercontent.com/u/9633055?v=4?s=100" width="100px;" alt=""/><br /><sub><b>hlo-world</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hlo-world" title="Code">💻</a></td> <td align="center"><a href="https://github.com/huntertl"><img src="https://avatars1.githubusercontent.com/u/15113885?v=4?s=100" width="100px;" alt=""/><br /><sub><b>huntertl</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=huntertl" title="Code">💻</a></td> <td align="center"><a href="https://whattheshot.com"><img src="https://avatars2.githubusercontent.com/u/623763?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Yann Defretin</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=kinoute" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=kinoute" title="Documentation">📖</a> <a href="#question-kinoute" title="Answering Questions">💬</a> <a href="#ideas-kinoute" title="Ideas, Planning, & Feedback">🤔</a></td> </tr> <tr> <td align="center"><a href="https://github.com/mananeau"><img src="https://avatars0.githubusercontent.com/u/29440170?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Manuel </b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mananeau" title="Documentation">📖</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mananeau" title="Code">💻</a></td> <td align="center"><a href="http://jacobsgill.es"><img src="https://avatars2.githubusercontent.com/u/9109832?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Gilles Jacobs</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=GillesJ" title="Documentation">📖</a></td> <td align="center"><a href="https://github.com/shasha79"><img src="https://avatars2.githubusercontent.com/u/5512649?v=4?s=100" width="100px;" alt=""/><br /><sub><b>shasha79</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=shasha79" title="Code">💻</a></td> <td align="center"><a href="http://www-lium.univ-lemans.fr/~garcia"><img src="https://avatars2.githubusercontent.com/u/14233427?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Mercedes Garcia</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=merc85garcia" title="Code">💻</a></td> <td align="center"><a href="https://github.com/hammad26"><img src="https://avatars1.githubusercontent.com/u/12643784?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Hammad Hassan Tarar</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hammad26" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hammad26" title="Documentation">📖</a></td> <td align="center"><a href="https://github.com/todd-cook"><img src="https://avatars3.githubusercontent.com/u/665389?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Todd Cook</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=todd-cook" title="Code">💻</a></td> <td align="center"><a href="http://knuthellan.com/"><img src="https://avatars2.githubusercontent.com/u/51441?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Knut O. Hellan</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=khellan" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=khellan" title="Documentation">📖</a></td> </tr> <tr> <td align="center"><a href="https://github.com/nagenshukla"><img src="https://avatars0.githubusercontent.com/u/39196228?v=4?s=100" width="100px;" alt=""/><br /><sub><b>nagenshukla</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=nagenshukla" title="Code">💻</a></td> <td align="center"><a href="https://www.linkedin.com/in/flaviussn/"><img src="https://avatars0.githubusercontent.com/u/20523032?v=4?s=100" width="100px;" alt=""/><br /><sub><b>flaviussn</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=flaviussn" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=flaviussn" title="Documentation">📖</a></td> <td align="center"><a href="http://marctorrellas.github.com"><img src="https://avatars1.githubusercontent.com/u/22045779?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Marc Torrellas</b></sub></a><br /><a href="#maintenance-marctorrellas" title="Maintenance">🚧</a></td> <td align="center"><a href="https://github.com/adrienrenaud"><img src="https://avatars3.githubusercontent.com/u/6208157?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Adrien Renaud</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=adrienrenaud" title="Code">💻</a></td> <td align="center"><a href="https://github.com/jacky18008"><img src="https://avatars0.githubusercontent.com/u/9031441?v=4?s=100" width="100px;" alt=""/><br /><sub><b>jacky18008</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=jacky18008" title="Code">💻</a></td> <td align="center"><a href="https://github.com/seo-95"><img src="https://avatars0.githubusercontent.com/u/38254541?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Matteo Senese</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=seo-95" title="Code">💻</a></td> <td

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多