
快速构建和优化Transformer模型的开源工具
simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。
This library is based on the Transformers library by HuggingFace. Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model.
Supported Tasks:
Anaconda or Miniconda Package Manager from here$ conda create -n st python pandas tqdm $ conda activate st
Using Cuda:
$ conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch
Without using Cuda
$ conda install pytorch cpuonly -c pytorch
simpletransformers.$ pip install simpletransformers
Weights and Biases (wandb) for tracking and visualizing training in a web browser.$ pip install wandb
All documentation is now live at simpletransformers.ai
Simple Transformer models are built with a particular Natural Language Processing (NLP) task in mind. Each such model comes equipped with features and functionality designed to best fit the task that they are intended to perform. The high-level process of using Simple Transformers models follows the same pattern.
train_model()eval_model()predict()However, there are necessary differences between the different models to ensure that they are well suited for their intended task. The key differences will typically be the differences in input/output data formats and any task specific features/configuration options. These can all be found in the documentation section for each task.
The currently implemented task-specific Simple Transformer models, along with their task, are given below.
| Task | Model |
|---|---|
| Binary and multi-class text classification | ClassificationModel |
| Conversational AI (chatbot training) | ConvAIModel |
| Language generation | LanguageGenerationModel |
| Language model training/fine-tuning | LanguageModelingModel |
| Multi-label text classification | MultiLabelClassificationModel |
| Multi-modal classification (text and image data combined) | MultiModalClassificationModel |
| Named entity recognition | NERModel |
| Question answering | QuestionAnsweringModel |
| Regression | ClassificationModel |
| Sentence-pair classification | ClassificationModel |
| Text Representation Generation | RepresentationModel |
| Document Retrieval | RetrievalModel |
from simpletransformers.classification import ClassificationModel, ClassificationArgs import pandas as pd import logging logging.basicConfig(level=logging.INFO) transformers_logger = logging.getLogger("transformers") transformers_logger.setLevel(logging.WARNING) # Preparing train data train_data = [ ["Aragorn was the heir of Isildur", 1], ["Frodo was the heir of Isildur", 0], ] train_df = pd.DataFrame(train_data) train_df.columns = ["text", "labels"] # Preparing eval data eval_data = [ ["Theoden was the king of Rohan", 1], ["Merry was the king of Rohan", 0], ] eval_df = pd.DataFrame(eval_data) eval_df.columns = ["text", "labels"] # Optional model configuration model_args = ClassificationArgs(num_train_epochs=1) # Create a ClassificationModel model = ClassificationModel( "roberta", "roberta-base", args=model_args ) # Train the model model.train_model(train_df) # Evaluate the model result, model_outputs, wrong_predictions = model.eval_model(eval_df) # Make predictions with the model predictions, raw_outputs = model.predict(["Sam was a Wizard"])
For a list of pretrained models, see Hugging Face docs.
The model_types available for each task can be found under their respective section. Any pretrained model of that type
found in the Hugging Face docs should work. To use any of them set the correct model_type and model_name in the args
dictionary.
Thanks goes to these wonderful people (emoji key):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center"><a href="https://github.com/hawktang"><img src="https://avatars0.githubusercontent.com/u/2004071?v=4?s=100" width="100px;" alt=""/><br /><sub><b>hawktang</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hawktang" title="Code">💻</a></td> <td align="center"><a href="http://datawizzards.io"><img src="https://avatars0.githubusercontent.com/u/22409996?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Mabu Manaileng</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mabu-dev" title="Code">💻</a></td> <td align="center"><a href="https://www.facebook.com/aliosm97"><img src="https://avatars3.githubusercontent.com/u/7662492?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Ali Hamdi Ali Fadel</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=AliOsm" title="Code">💻</a></td> <td align="center"><a href="http://tovly.co"><img src="https://avatars0.githubusercontent.com/u/12242351?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Tovly Deutsch</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=TovlyDeutsch" title="Code">💻</a></td> <td align="center"><a href="https://github.com/hlo-world"><img src="https://avatars0.githubusercontent.com/u/9633055?v=4?s=100" width="100px;" alt=""/><br /><sub><b>hlo-world</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hlo-world" title="Code">💻</a></td> <td align="center"><a href="https://github.com/huntertl"><img src="https://avatars1.githubusercontent.com/u/15113885?v=4?s=100" width="100px;" alt=""/><br /><sub><b>huntertl</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=huntertl" title="Code">💻</a></td> <td align="center"><a href="https://whattheshot.com"><img src="https://avatars2.githubusercontent.com/u/623763?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Yann Defretin</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=kinoute" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=kinoute" title="Documentation">📖</a> <a href="#question-kinoute" title="Answering Questions">💬</a> <a href="#ideas-kinoute" title="Ideas, Planning, & Feedback">🤔</a></td> </tr> <tr> <td align="center"><a href="https://github.com/mananeau"><img src="https://avatars0.githubusercontent.com/u/29440170?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Manuel </b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mananeau" title="Documentation">📖</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=mananeau" title="Code">💻</a></td> <td align="center"><a href="http://jacobsgill.es"><img src="https://avatars2.githubusercontent.com/u/9109832?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Gilles Jacobs</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=GillesJ" title="Documentation">📖</a></td> <td align="center"><a href="https://github.com/shasha79"><img src="https://avatars2.githubusercontent.com/u/5512649?v=4?s=100" width="100px;" alt=""/><br /><sub><b>shasha79</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=shasha79" title="Code">💻</a></td> <td align="center"><a href="http://www-lium.univ-lemans.fr/~garcia"><img src="https://avatars2.githubusercontent.com/u/14233427?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Mercedes Garcia</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=merc85garcia" title="Code">💻</a></td> <td align="center"><a href="https://github.com/hammad26"><img src="https://avatars1.githubusercontent.com/u/12643784?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Hammad Hassan Tarar</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hammad26" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=hammad26" title="Documentation">📖</a></td> <td align="center"><a href="https://github.com/todd-cook"><img src="https://avatars3.githubusercontent.com/u/665389?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Todd Cook</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=todd-cook" title="Code">💻</a></td> <td align="center"><a href="http://knuthellan.com/"><img src="https://avatars2.githubusercontent.com/u/51441?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Knut O. Hellan</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=khellan" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=khellan" title="Documentation">📖</a></td> </tr> <tr> <td align="center"><a href="https://github.com/nagenshukla"><img src="https://avatars0.githubusercontent.com/u/39196228?v=4?s=100" width="100px;" alt=""/><br /><sub><b>nagenshukla</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=nagenshukla" title="Code">💻</a></td> <td align="center"><a href="https://www.linkedin.com/in/flaviussn/"><img src="https://avatars0.githubusercontent.com/u/20523032?v=4?s=100" width="100px;" alt=""/><br /><sub><b>flaviussn</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=flaviussn" title="Code">💻</a> <a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=flaviussn" title="Documentation">📖</a></td> <td align="center"><a href="http://marctorrellas.github.com"><img src="https://avatars1.githubusercontent.com/u/22045779?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Marc Torrellas</b></sub></a><br /><a href="#maintenance-marctorrellas" title="Maintenance">🚧</a></td> <td align="center"><a href="https://github.com/adrienrenaud"><img src="https://avatars3.githubusercontent.com/u/6208157?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Adrien Renaud</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=adrienrenaud" title="Code">💻</a></td> <td align="center"><a href="https://github.com/jacky18008"><img src="https://avatars0.githubusercontent.com/u/9031441?v=4?s=100" width="100px;" alt=""/><br /><sub><b>jacky18008</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=jacky18008" title="Code">💻</a></td> <td align="center"><a href="https://github.com/seo-95"><img src="https://avatars0.githubusercontent.com/u/38254541?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Matteo Senese</b></sub></a><br /><a href="https://github.com/ThilinaRajapakse/simpletransformers/commits?author=seo-95" title="Code">💻</a></td> <td

免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方 案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号