fonnx

fonnx

跨平台加速Flutter应用的ONNX模型运行库

FONNX是一个专为Flutter设计的跨平台ONNX模型运行库,支持在iOS、Android、Web等多个平台上原生执行机器学习模型。该库充分利用各平台的本地加速能力,如iOS的CoreML和Android的Neural Networks API,显著提升机器学习应用的性能。FONNX不仅支持直接使用Hugging Face的ONNX模型,还提供了将PyTorch、TensorFlow等格式模型转换为ONNX的便捷工具。

FONNX机器学习模型跨平台开发ONNXFlutterGithub开源项目

<img src="header.png" alt="FONNX image header, bird like Flutter mascot DJing. Text reads: FONNX. Any model on any edge. Run ONNX model & runtime, with platform-specific acceleration, inside Flutter, a modern, beautiful, cross-platform development framework." style="float: left; margin-right: 0px;" />

PlatformStatus
AndroidCodemagic build status
iOSCodemagic build status
LinuxCodemagic build status
macOSCodemagic build status
WebCodemagic build status
WindowsCodemagic build status

Changelog

2024 Apr 22

  • CI builds for all platforms are now running on Codemagic..

2024 Feb 26

  • Google's Magika for file identification supported on all platforms.
  • Example app including full voice assistant flow, with Whisper, Silero voice activity detection. Available at telosnex.github.io/fonnx/

2024 Feb 19

  • Whisper supported on all platforms, including web.

2024 Feb 13

  • Whisper now supported on all platforms besides web.
  • Whisper models support timestamps. (not exposed via API, yet)
  • Silero VAD added to all platforms besides web.
  • Silero VAD enables detecting when the user is done speaking with a much higher success rate than relying on volume levels.
  • Example contains SttService, an example of how to integrate the VAD and Whisper together with an easy to use interface. (Stream<String>)

FONNX

Any model on any edge

Run ML models natively on any platform. ONNX models can be run on iOS, Android, Web, Linux, Windows, and macOS.

What is FONNX?

FONNX is a Flutter library for running ONNX models. Flutter, and FONNX, run natively on iOS, Android, Web, Linux, Windows, and macOS. FONNX leverages ONNX to provide native acceleration capabilities, from CoreML on iOS, to Android Neural Networks API on Android, to WASM SIMD on Web. Most models can be easily converted to ONNX format, including models from Pytorch, Tensorflow, and more.

Getting ONNX Models

Hugging Face

🤗 Hugging Face has a large collection of models, including many that are ONNX format. 90% of the models are Pytorch, which can be converted to ONNX.

Here is a search for ONNX models.

Export ONNX from Pytorch, Tensorflow, & more

A command-line tool called optimum-cli from HuggingFace converts Pytorch and Tensorflow models. This covers the vast majority of models. optimum-cli can also quantize models, significantly reduce model size, usually with negligible impact on accuracy.

See official documentation or the quick start snippet on GitHub.
Another tool that automates conversion to ONNX is HFOnnx. It was used to export the text embeddings models in this repo. Its advantages included a significantly smaller model size, and incorporating post-processing (pooling) into the model itself.

  • Brief intro to how ONNX model format & runtime work huggingface.com
  • Netron allows you to view ONNX models, inspect their runtime graph, and export them to other formats

Text Embeddings

These models generate embeddings for text. An embedding is a vector of floating point numbers that represents the meaning of the text.
Embeddings are the foundation of a vector database, as well as retrieval augmented generation - deciding which text snippets to provide in the limited context window of an LLM like GPT.

Running locally using FONNX provides significant privacy benefits, as well as latency benefits. For example, rather than having to store the embedding and text of each chunk of a document on a server, they can be stored on-device. Both MiniLM L6 V2 and MSMARCO MiniLM L6 V3 are both the product of the Sentence Transformers project. Their website has excellent documentation explaining, for instance, semantic search

MiniLM L6 V2

Trained on a billion sentence pairs from diverse sources, from Reddit to WikiAnswers to StackExchange. MiniLM L6 V2 is well-suited for numerous tasks, from text classification to semantic search. It is optimized for symmetric search, where text is roughly of the same length and meaning. Input text is divided into approximately 200 words, and an embedding is generated for each.
🤗 Hugging Face

MSMARCO MiniLM L6 V3

Trained on pairs of Bing search queries to web pages that contained answers for the query. It is optimized for asymmetric semantic search, matching a search query to an answer. Additionally, it has 2x the input size of MiniLM L6 V2: it can accept up to 400 words as input for one embedding.
🤗 Hugging Face

Benchmarks

iPhone 14: 67 ms
Pixel Fold: 33 ms
macOS: 13 ms
WASM SIMD: 41 ms

Avg. ms for 1 Mini LM L6 V2 embedding / 200 words.

  • Run on Thurs Oct 12th 2023.
  • macOS and WASM-SIMD runs on MacBook Pro M2 Max.
  • Average of 100 embeddings, after a warmup of 10.
  • Input is mix of lorem ipsum text from 8 languages.

Integrating FONNX

macOS, Windows, Linux via FFI

The ONNX C library is used for macOS, Windows, and Linux. Flutter can call into it via FFI. Nothing special is required to use FFI on these platforms.

iOS via ONNX pods

iOS uses the official ONNX Objective-C library. No additional tasks besides adding FONNX to your Flutter project are required.

iOS build fails when linked against .dylib provided with ONNX releases. They are explicitly marked as for macOS.

Android via ONNX AAR

Android uses the official ONNX Android dependencies from a Maven repository. Note that ProGuard rules are required to prevent the ONNX library from being stripped.

Web

Sending these headers with the request for the ONNX JS package gives a 10x speedup:

Cross-Origin-Embedder-Policy: require-corp
Cross-Origin-Opener-Policy: same-origin

See this GitHub issue for details. TL;DR: It allows use of multiple threads by ONNX's WASM implementation by using a SharedArrayBuffer.

Developing with Web

While developing, two issues prevent it work working on the web. Both have workarounds

WASM Mime Type

You may see errors in console logs about the MIME type of the .wasm being incorrect and starting with the wrong bytes.

That is due to local Flutter serving of the web app.

To fix, download the WASM files from the same CDN folder that hosts ort.min.js (see __worker.js) and also in __minilm_worker.js, remove the // in front of ort.env.wasm.wasmPaths = "".

Then, place the WASM files downloaded from the CDN next to index.html.

In release mode and deployed, this is not an issue, you do not need to host the WASM files.

Cross-Origin-Embedder-Policy

To safely use SharedArrayBuffer, the server must send the Cross-Origin-Embedder-Policy header with the value require-corp.

See here for how to workaround it: https://github.com/nagadomi/nunif/issues/34

Note that the extension became adware, you should have Chrome set up its permissions such that it isn't run until you click it. Also, note that you have to do that each time the Flutter web app in debug mode's port changes.

License

FONNX is licensed under a dual-license model.

The code as-is on GitHub is licensed under GPL v2. That requires distribution of the integrating app's source code, and this is unlikely to be desirable for commercial entities. See LICENSE.md.

Commercial licenses are also available. Contact info@telosnex.com. Expect very fair terms: our intent is to charge only entities, with a launched app, making a lot of money, with FONNX as a core dependency. The base agreement is here: https://github.com/lawndoc/dual-license-templates/blob/main/pdf/Basic-Yearly.pdf

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多