跨平台加速Flutter应用的ONNX模型运行库
FONNX是一个专为Flutter设计的跨平台ONNX模型运行库,支持在iOS、Android、Web等多个平台上原生执行机器学习模型。该库充分利用各平台的本地加速能力,如iOS的CoreML和Android的Neural Networks API,显著提升机器学习应用的性能。FONNX不仅支持直接使用Hugging Face的ONNX模型,还提供了将PyTorch、TensorFlow等格式模型转换为ONNX的便捷工具。
<img src="header.png" alt="FONNX image header, bird like Flutter mascot DJing. Text reads: FONNX. Any model on any edge. Run ONNX model & runtime, with platform-specific acceleration, inside Flutter, a modern, beautiful, cross-platform development framework." style="float: left; margin-right: 0px;" />
Platform | Status |
---|---|
Android | |
iOS | |
Linux | |
macOS | |
Web | |
Windows |
SttService
, an example of how to integrate the VAD and Whisper together with an easy to use interface. (Stream<String>)Run ML models natively on any platform. ONNX models can be run on iOS, Android, Web, Linux, Windows, and macOS.
FONNX is a Flutter library for running ONNX models. Flutter, and FONNX, run natively on iOS, Android, Web, Linux, Windows, and macOS. FONNX leverages ONNX to provide native acceleration capabilities, from CoreML on iOS, to Android Neural Networks API on Android, to WASM SIMD on Web. Most models can be easily converted to ONNX format, including models from Pytorch, Tensorflow, and more.
🤗 Hugging Face has a large collection of models, including many that are ONNX format. 90% of the models are Pytorch, which can be converted to ONNX.
Here is a search for ONNX models.
A command-line tool called optimum-cli
from HuggingFace converts Pytorch and Tensorflow models. This covers the vast majority of models. optimum-cli
can also quantize models, significantly reduce model size, usually with negligible impact on accuracy.
See official documentation or the
quick start snippet on GitHub.
Another tool that automates conversion to ONNX is HFOnnx. It was used to export the text embeddings models in this repo. Its advantages included a significantly smaller model size, and incorporating post-processing (pooling) into the model itself.
These models generate embeddings for text.
An embedding is a vector of floating point numbers that represents the meaning of the text.
Embeddings are the foundation of a vector database, as well as retrieval augmented generation - deciding which text snippets to provide in the limited context window of an LLM like GPT.
Running locally using FONNX provides significant privacy benefits, as well as latency benefits. For example, rather than having to store the embedding and text of each chunk of a document on a server, they can be stored on-device. Both MiniLM L6 V2 and MSMARCO MiniLM L6 V3 are both the product of the Sentence Transformers project. Their website has excellent documentation explaining, for instance, semantic search
Trained on a billion sentence pairs from diverse sources, from Reddit to WikiAnswers to StackExchange.
MiniLM L6 V2 is well-suited for numerous tasks, from text classification to semantic search.
It is optimized for symmetric search, where text is roughly of the same length and meaning.
Input text is divided into approximately 200 words, and an embedding is generated for each.
🤗 Hugging Face
Trained on pairs of Bing search queries to web pages that contained answers for the query.
It is optimized for asymmetric semantic search, matching a search query to an answer.
Additionally, it has 2x the input size of MiniLM L6 V2: it can accept up to 400 words as input for one embedding.
🤗 Hugging Face
iPhone 14: 67 ms
Pixel Fold: 33 ms
macOS: 13 ms
WASM SIMD: 41 ms
Avg. ms for 1 Mini LM L6 V2 embedding / 200 words.
The ONNX C library is used for macOS, Windows, and Linux. Flutter can call into it via FFI. Nothing special is required to use FFI on these platforms.
iOS uses the official ONNX Objective-C library. No additional tasks besides adding FONNX to your Flutter project are required.
iOS build fails when linked against .dylib provided with ONNX releases. They are explicitly marked as for macOS.
Android uses the official ONNX Android dependencies from a Maven repository. Note that ProGuard rules are required to prevent the ONNX library from being stripped.
Sending these headers with the request for the ONNX JS package gives a 10x speedup:
Cross-Origin-Embedder-Policy: require-corp
Cross-Origin-Opener-Policy: same-origin
See this GitHub issue for details. TL;DR: It allows use of multiple threads by ONNX's WASM implementation by using a SharedArrayBuffer.
While developing, two issues prevent it work working on the web. Both have workarounds
You may see errors in console logs about the MIME type of the .wasm being incorrect and starting with the wrong bytes.
That is due to local Flutter serving of the web app.
To fix, download the WASM files from the same CDN folder that hosts ort.min.js (see __worker.js) and also in __minilm_worker.js, remove the // in front of ort.env.wasm.wasmPaths = "".
Then, place the WASM files downloaded from the CDN next to index.html.
In release mode and deployed, this is not an issue, you do not need to host the WASM files.
To safely use SharedArrayBuffer, the server must send the Cross-Origin-Embedder-Policy header with the value require-corp.
See here for how to workaround it: https://github.com/nagadomi/nunif/issues/34
Note that the extension became adware, you should have Chrome set up its permissions such that it isn't run until you click it. Also, note that you have to do that each time the Flutter web app in debug mode's port changes.
FONNX is licensed under a dual-license model.
The code as-is on GitHub is licensed under GPL v2. That requires distribution of the integrating app's source code, and this is unlikely to be desirable for commercial entities. See LICENSE.md.
Commercial licenses are also available. Contact info@telosnex.com. Expect very fair terms: our intent is to charge only entities, with a launched app, making a lot of money, with FONNX as a core dependency. The base agreement is here: https://github.com/lawndoc/dual-license-templates/blob/main/pdf/Basic-Yearly.pdf
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够 帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务 研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号