FrameworkBenchmarks

FrameworkBenchmarks

Web应用框架性能评测开源基准项目

FrameworkBenchmarks是一个对Web应用框架进行性能评测的开源项目。它测试多种编程语言框架,包括Go、Python和Java等,评估纯文本响应、JSON序列化和数据库操作等性能。作为业内权威的Web框架性能评测平台,FrameworkBenchmarks为开发者提供了宝贵的参考依据。该项目提供客观数据,助力开发者选择合适框架。社区可参与贡献,持续扩展测试范围。

TechEmpower框架基准测试性能测试Web应用框架开源项目Github

Welcome to TechEmpower Framework Benchmarks (TFB)

Build Status

If you're new to the project, welcome! Please feel free to ask questions here. We encourage new frameworks and contributors to ask questions. We're here to help!

This project provides representative performance measures across a wide field of web application frameworks. With much help from the community, coverage is quite broad and we are happy to broaden it further with contributions. The project presently includes frameworks on many languages including Go, Python, Java, Ruby, PHP, C#, F#,Clojure, Groovy, Dart, JavaScript, Erlang, Haskell, Scala, Perl, Lua, C, and others. The current tests exercise plaintext responses, JSON serialization, database reads and writes via the object-relational mapper (ORM), collections, sorting, server-side templates, and XSS counter-measures. Future tests will exercise other components and greater computation.

Read more and see the results of our tests on cloud and physical hardware. For descriptions of the test types that we run, see the test requirements section.

If you find yourself in a directory or file that you're not sure what the purpose is, checkout our file structure in our documentation, which will briefly explain the use of relevant directories and files.

Quick Start Guide

To get started developing you'll need to install docker or see our Quick Start Guide using vagrant

  1. Clone TFB.

     $ git clone https://github.com/TechEmpower/FrameworkBenchmarks.git
    
  2. Change directories

     $ cd FrameworkBenchmarks
    
  3. Run a test.

     $ ./tfb --mode verify --test gemini
    

Explanation of the ./tfb script

The run script is pretty wordy, but each and every flag is required. If you are using windows, either adapt the docker command at the end of the ./tfb shell script (replacing ${SCRIPT_ROOT} with /c/path/to/FrameworkBenchmarks), or use vagrant.

The command looks like this: docker run -it --rm --network tfb -v /var/run/docker.sock:/var/run/docker.sock -v [FWROOT]:/FrameworkBenchmarks techempower/tfb [ARGS]

  • -it tells docker to run this in 'interactive' mode and simulate a TTY, so that ctrl+c is propagated.
  • --rm tells docker to remove the container as soon as the toolset finishes running, meaning there aren't hundreds of stopped containers lying around.
  • --network=tfb tells the container to join the 'tfb' Docker virtual network
  • The first -v specifies which Docker socket path to mount as a volume in the running container. This allows docker commands run inside this container to use the host container's docker to create/run/stop/remove containers.
  • The second -v mounts the FrameworkBenchmarks source directory as a volume to share with the container so that rebuilding the toolset image is unnecessary and any changes you make on the host system are available in the running toolset container.
  • techempower/tfb is the name of toolset container to run

A note on Windows

  • Docker expects Linux-style paths. If you cloned on your C:\ drive, then [ABS PATH TO THIS DIR] would be /c/FrameworkBenchmarks.
  • Docker for Windows understands /var/run/docker.sock even though that is not a valid path on Windows, but only when using Linux containers (it doesn't work with Windows containers and LCOW). Docker Toolbox may not understand /var/run/docker.sock, even when using Linux containers - use at your own risk.

Quick Start Guide (Vagrant)

Get started developing quickly by utilizing vagrant with TFB. Git, Virtualbox and vagrant are required.

  1. Clone TFB.

     $ git clone https://github.com/TechEmpower/FrameworkBenchmarks.git
    
  2. Change directories

     $ cd FrameworkBenchmarks/deployment/vagrant
    
  3. Build the vagrant virtual machine

     $ vagrant up
    
  4. Run a test

     $ vagrant ssh
     $ tfb --mode verify --test gemini
    

Add a New Test

Either on your computer, or once you open an SSH connection to your vagrant box, start the new test initialization wizard.

    vagrant@TFB-all:~/FrameworkBenchmarks$ ./tfb --new

This will walk you through the entire process of creating a new test to include in the suite.

Resources

Official Documentation

Our official documentation can be found in the wiki. If you find any errors or areas for improvement within the docs, feel free to open an issue in this repo.

Live Results

Results of continuous benchmarking runs are available in real time here.

Data Visualization

If you have a results.json file that you would like to visualize, you can do that here. You can also attach a runid parameter to that url where runid is a run listed on tfb-status like so: https://www.techempower.com/benchmarks/#section=test&runid=fd07b64e-47ce-411e-8b9b-b13368e988c6. If you want to visualize them or compare different results files on bash, here is an unofficial plaintext results parser

Contributing

The community has consistently helped in making these tests better, and we welcome any and all changes. Reviewing our contribution practices and guidelines will help to keep us all on the same page. The contribution guide can be found in the TFB documentation.

Join in the conversation in the Discussions tab, on Twitter, or chat with us on Freenode at #techempower-fwbm.

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多