FrameworkBenchmarks

FrameworkBenchmarks

Web应用框架性能评测开源基准项目

FrameworkBenchmarks是一个对Web应用框架进行性能评测的开源项目。它测试多种编程语言框架,包括Go、Python和Java等,评估纯文本响应、JSON序列化和数据库操作等性能。作为业内权威的Web框架性能评测平台,FrameworkBenchmarks为开发者提供了宝贵的参考依据。该项目提供客观数据,助力开发者选择合适框架。社区可参与贡献,持续扩展测试范围。

TechEmpower框架基准测试性能测试Web应用框架开源项目Github

Welcome to TechEmpower Framework Benchmarks (TFB)

Build Status

If you're new to the project, welcome! Please feel free to ask questions here. We encourage new frameworks and contributors to ask questions. We're here to help!

This project provides representative performance measures across a wide field of web application frameworks. With much help from the community, coverage is quite broad and we are happy to broaden it further with contributions. The project presently includes frameworks on many languages including Go, Python, Java, Ruby, PHP, C#, F#,Clojure, Groovy, Dart, JavaScript, Erlang, Haskell, Scala, Perl, Lua, C, and others. The current tests exercise plaintext responses, JSON serialization, database reads and writes via the object-relational mapper (ORM), collections, sorting, server-side templates, and XSS counter-measures. Future tests will exercise other components and greater computation.

Read more and see the results of our tests on cloud and physical hardware. For descriptions of the test types that we run, see the test requirements section.

If you find yourself in a directory or file that you're not sure what the purpose is, checkout our file structure in our documentation, which will briefly explain the use of relevant directories and files.

Quick Start Guide

To get started developing you'll need to install docker or see our Quick Start Guide using vagrant

  1. Clone TFB.

     $ git clone https://github.com/TechEmpower/FrameworkBenchmarks.git
    
  2. Change directories

     $ cd FrameworkBenchmarks
    
  3. Run a test.

     $ ./tfb --mode verify --test gemini
    

Explanation of the ./tfb script

The run script is pretty wordy, but each and every flag is required. If you are using windows, either adapt the docker command at the end of the ./tfb shell script (replacing ${SCRIPT_ROOT} with /c/path/to/FrameworkBenchmarks), or use vagrant.

The command looks like this: docker run -it --rm --network tfb -v /var/run/docker.sock:/var/run/docker.sock -v [FWROOT]:/FrameworkBenchmarks techempower/tfb [ARGS]

  • -it tells docker to run this in 'interactive' mode and simulate a TTY, so that ctrl+c is propagated.
  • --rm tells docker to remove the container as soon as the toolset finishes running, meaning there aren't hundreds of stopped containers lying around.
  • --network=tfb tells the container to join the 'tfb' Docker virtual network
  • The first -v specifies which Docker socket path to mount as a volume in the running container. This allows docker commands run inside this container to use the host container's docker to create/run/stop/remove containers.
  • The second -v mounts the FrameworkBenchmarks source directory as a volume to share with the container so that rebuilding the toolset image is unnecessary and any changes you make on the host system are available in the running toolset container.
  • techempower/tfb is the name of toolset container to run

A note on Windows

  • Docker expects Linux-style paths. If you cloned on your C:\ drive, then [ABS PATH TO THIS DIR] would be /c/FrameworkBenchmarks.
  • Docker for Windows understands /var/run/docker.sock even though that is not a valid path on Windows, but only when using Linux containers (it doesn't work with Windows containers and LCOW). Docker Toolbox may not understand /var/run/docker.sock, even when using Linux containers - use at your own risk.

Quick Start Guide (Vagrant)

Get started developing quickly by utilizing vagrant with TFB. Git, Virtualbox and vagrant are required.

  1. Clone TFB.

     $ git clone https://github.com/TechEmpower/FrameworkBenchmarks.git
    
  2. Change directories

     $ cd FrameworkBenchmarks/deployment/vagrant
    
  3. Build the vagrant virtual machine

     $ vagrant up
    
  4. Run a test

     $ vagrant ssh
     $ tfb --mode verify --test gemini
    

Add a New Test

Either on your computer, or once you open an SSH connection to your vagrant box, start the new test initialization wizard.

    vagrant@TFB-all:~/FrameworkBenchmarks$ ./tfb --new

This will walk you through the entire process of creating a new test to include in the suite.

Resources

Official Documentation

Our official documentation can be found in the wiki. If you find any errors or areas for improvement within the docs, feel free to open an issue in this repo.

Live Results

Results of continuous benchmarking runs are available in real time here.

Data Visualization

If you have a results.json file that you would like to visualize, you can do that here. You can also attach a runid parameter to that url where runid is a run listed on tfb-status like so: https://www.techempower.com/benchmarks/#section=test&runid=fd07b64e-47ce-411e-8b9b-b13368e988c6. If you want to visualize them or compare different results files on bash, here is an unofficial plaintext results parser

Contributing

The community has consistently helped in making these tests better, and we welcome any and all changes. Reviewing our contribution practices and guidelines will help to keep us all on the same page. The contribution guide can be found in the TFB documentation.

Join in the conversation in the Discussions tab, on Twitter, or chat with us on Freenode at #techempower-fwbm.

编辑推荐精选

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

下拉加载更多