
实现实时端到端目标检测新突破
YOLOv10是新一代实时端到端目标检测模型,通过创新的无NMS训练策略和全面的效率-准确度优化设计,在推理速度和计算效率方面实现显著提升。COCO数据集实验结果表明,YOLOv10在不同模型规模下均达到了业界领先的性能和效率水平,为实时目标检测领域带来新的发展方向。
YOLOv10的官方PyTorch实现。
<p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/03380842-3444-4350-b119-51bc8acc3e49.svg" width=48%> <img src="https://yellow-cdn.veclightyear.com/835a84d5/a9d5a8b5-0997-4234-9b11-4961e536f930.svg" width=48%> <br> 与其他方法在延迟-精度(左)和大小-精度(右)权衡方面的比较。 </p>YOLOv10:实时端到端目标检测。
王奥、陈辉、刘立浩、陈凯、林子嘉、韩军功和丁贵广
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb#scrollTo=SaKTSzSWnG7s"><img src="https://yellow-cdn.veclightyear.com/835a84d5/224f29eb-a853-481d-abc6-be335772b51a.svg" alt="在Colab中打开"></a>
COCO
| 模型 | 测试尺寸 | 参数量 | 浮点运算次数 | AP<sup>val</sup> | 延迟 |
|---|---|---|---|---|---|
| YOLOv10-N | 640 | 2.3M | 6.7G | 38.5% | 1.84ms |
| YOLOv10-S | 640 | 7.2M | 21.6G | 46.3% | 2.49ms |
| YOLOv10-M | 640 | 15.4M | 59.1G | 51.1% | 4.74ms |
| YOLOv10-B | 640 | 19.1M | 92.0G | 52.5% | 5.74ms |
| YOLOv10-L | 640 | 24.4M | 120.3G | 53.2% | 7.28ms |
| YOLOv10-X | 640 | 29.5M | 160.4G | 54.4% | 10.70ms |
推荐使用conda虚拟环境。
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .
python app.py
# 请访问 http://127.0.0.1:7860
yolov10n yolov10s yolov10m yolov10b yolov10l yolov10x
yolo val model=jameslahm/yolov10{n/s/m/b/l/x} data=coco.yaml batch=256
或者
from ultralytics import YOLOv10 model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # 或者 # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt model = YOLOv10('yolov10{n/s/m/b/l/x}.pt') model.val(data='coco.yaml', batch=256)
yolo detect train data=coco.yaml model=yolov10n/s/m/b/l/x.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7
或者
from ultralytics import YOLOv10 model = YOLOv10() # 如果你想使用预训练权重进行微调,可以像下面这样加载预训练权重 # model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # 或者 # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt # model = YOLOv10('yolov10{n/s/m/b/l/x}.pt') model.train(data='coco.yaml', epochs=500, batch=256, imgsz=640)
你可以选择将微调后的模型推送到 Hugging Face hub 作为公开或私有模型:
# 假设你已经为作物检测微调了一个模型 model.push_to_hub("<你的-hf-用户名-或-组织/yolov10-finetuned-crop-detection") # 如果你不想让所有人都看到你的模型,你也可以传入 `private=True` model.push_to_hub("<你的-hf-用户名-或-组织/yolov10-finetuned-crop-detection", private=True)
注意,可以设置较小的置信度阈值来检测较小的物体或远处的物体。详情请参考这里。
yolo predict model=jameslahm/yolov10{n/s/m/b/l/x}
或者
from ultralytics import YOLOv10 model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # 或者 # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt model = YOLOv10('yolov10{n/s/m/b/l/x}.pt') model.predict()
# 端到端 ONNX
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=onnx opset=13 simplify
# 使用 ONNX 进行预测
yolo predict model=yolov10n/s/m/b/l/x.onnx
# 端到端 TensorRT
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=engine half=True simplify opset=13 workspace=16
# 或者
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# 使用 TensorRT 进行预测
yolo predict model=yolov10n/s/m/b/l/x.engine
或者
from ultralytics import YOLOv10 model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # 或者 # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt model = YOLOv10('yolov10{n/s/m/b/l/x}.pt') model.export(...)
代码库基于ultralytics和RT-DETR构建。
感谢这些出色的实现!
如果我们的代码或模型对您的工作有所帮助,请引用我们的论文:
@article{wang2024yolov10, title={YOLOv10: Real-Time End-to-End Object Detection}, author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang}, journal={arXiv preprint arXiv:2405.14458}, year={2024} }


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使 用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。