MACE

MACE

扩散模型中的大规模概念擦除技术

MACE是一种用于扩散模型的大规模概念擦除框架。该技术可同时擦除多达100个概念,并在泛化性和特异性间达成平衡。通过结合闭式交叉注意力优化和LoRA微调,MACE能有效消除不需要的概念信息。在对象、名人、显式内容和艺术风格擦除等多项任务评估中,MACE的性能均超越了现有方法。

MACE概念消除扩散模型人工智能图像生成Github开源项目

[CVPR 2024] MACE:扩散模型中的大规模概念擦除

arXiv

MACE:扩散模型中的大规模概念擦除的官方实现。

MACE:扩散模型中的大规模概念擦除<br> Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, Adams Wai-Kin Kong <br> CVPR 2024

摘要<br> 大规模文本到图像扩散模型的快速发展引发了人们对其可能被滥用于创建有害或误导性内容的日益关注。在本文中,我们提出了MACE,一个用于大规模概念擦除任务的微调框架。该任务旨在防止模型在接收提示时生成包含不需要的概念的图像。现有的概念擦除方法通常限于同时处理不到五个概念,并且难以在擦除概念同义词(普遍性)和维持无关概念(特异性)之间取得平衡。相比之下,MACE的不同之处在于成功地将擦除范围扩大到100个概念,并在普遍性和特异性之间取得了有效平衡。这是通过利用闭式交叉注意力细化和LoRA微调来共同消除不需要的概念信息实现的。此外,MACE集成了多个LoRA,而不会相互干扰。我们对MACE与先前方法在四个不同任务上进行了广泛评估:物体擦除、名人擦除、露骨内容擦除和艺术风格擦除。我们的结果表明,MACE在所有评估任务中都超越了先前的方法。

teaser


framework

(a) 我们的框架专注于调整交叉注意力(CA)块内与提示相关的投影矩阵。(b) 使用闭式解对预训练U-Net的CA块进行细化,阻止模型将目标短语的残余信息嵌入到周围的词中。(c) 对于每个要移除的概念,学习一个独特的LoRA模块以消除其内在信息。(d) 引入闭式解以集成多个LoRA模块,避免相互干扰,同时防止灾难性遗忘。


目录

<br>

设置

创建Conda环境

git clone https://github.com/Shilin-LU/MACE.git
conda create -n mace python=3.10
conda activate mace
conda install pytorch==2.0.1 torchvision==0.15.2 pytorch-cuda=11.7 -c pytorch -c nvidia

安装Grounded-SAM以准备用于LoRA调优的掩码

您可以选择使用其他分割模型并跳过此部分;但请注意,如果掩码不精确或未使用,性能可能会受到影响。

export AM_I_DOCKER=False
export BUILD_WITH_CUDA=True
# export CUDA_HOME=/path/to/cuda-11.7/

cd MACE
git clone https://github.com/IDEA-Research/Grounded-Segment-Anything.git
cd Grounded-Segment-Anything

# 安装Segment Anything:
python -m pip install -e segment_anything

# 安装Grounding DINO:
pip install --no-build-isolation -e GroundingDINO

# 安装osx:
git submodule update --init --recursive
cd grounded-sam-osx && bash install.sh

# 安装RAM和Tag2Text:
git clone https://github.com/xinyu1205/recognize-anything.git
pip install -r ./recognize-anything/requirements.txt
pip install -e ./recognize-anything/

下载Grounded-SAM的预训练权重。

cd ..    # cd Grounded-Segment-Anything

# 下载预训练的groundingdino-swin-tiny模型:
wget https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth

# 下载预训练的SAM模型:
wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth

安装其他依赖项

pip install diffusers==0.22.0 transformers==4.38.1
pip install accelerate openai omegaconf

准备MACE训练数据

要擦除概念,应为每个概念生成8张图像及其相应的分割掩码。要为您的目标概念准备数据,请在configs/object/ship.yaml中配置您的设置,并执行以下命令:

CUDA_VISIBLE_DEVICES=0 python data_preparation.py configs/object/ship.yaml

在开始大规模概念擦除过程之前,确保您已预先缓存了您希望保留的先验知识(例如MSCOCO)和特定领域知识(例如某些名人、艺术风格或物体)。

  • 您可以从这个OneDrive文件夹下载我们预先缓存的文件。下载后,将这些文件放在./cache/目录中使用。

  • 或者,要保留您选择的额外知识,您可以通过修改脚本src/cache_coco.py来缓存信息。

训练MACE以擦除概念

准备好数据后,您可以在同一配置文件configs/object/ship.yaml中指定训练参数,并运行以下命令:

CUDA_VISIBLE_DEVICES=0 python training.py configs/object/ship.yaml

从微调模型采样

可以通过运行以下命令简单地测试微调模型,生成几张图像:

CUDA_VISIBLE_DEVICES=0 python inference.py \
          --num_images 3 \
          --prompt '你的提示词' \
          --model_path /path/to/saved_model/LoRA_fusion_model \
          --save_path /path/to/save/folder

要基于预设种子的提示词列表(例如,来自CSV文件./prompts_csv/celebrity_100_concepts.csv)生成大量图像,请执行以下命令(超参数step应设置为与num_processes相同的值):

CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
          --multi_gpu --num_processes=4 --main_process_port 31372 \
          src/sample_images_from_csv.py \
          --prompts_path ./prompts_csv/celebrity_100_concepts.csv \
          --save_path /path/to/save/folder \
          --model_name /path/to/saved_model/LoRA_fusion_model \
          --step 4

MACE微调模型权重

我们提供了几个使用MACE微调的Stable Diffusion v1.4模型。

要擦除的概念类型微调模型
物体擦除OneDrive链接
名人擦除OneDrive链接
艺术风格擦除OneDrive链接
露骨内容擦除OneDrive链接

指标评估

在我们的评估中,我们使用了多种指标,包括FIDCLIP分数CLIP分类准确率GCD准确率NudeNet检测结果

  • 评估FID:
CUDA_VISIBLE_DEVICES=0 python metrics/evaluate_fid.py --dir1 'path/to/generated/image/folder' --dir2 'path/to/coco/GT/folder'
  • 评估CLIP分数:
CUDA_VISIBLE_DEVICES=0 python metrics/evaluate_clip_score.py --image_dir 'path/to/generated/image/folder' --prompts_path './prompts_csv/coco_30k.csv'
  • 评估GCD准确率。使用此脚本进行检测时,请确保输入目录中只包含图像,无需进入子目录。这样可以防止在处理过程中出现错误。(请参阅GCD安装指南):
conda activate GCD
CUDA_VISIBLE_DEVICES=0 python metrics/evaluate_by_GCD.py --image_folder 'path/to/generated/image/folder'
CUDA_VISIBLE_DEVICES=0 python metrics/evaluate_by_nudenet.py --folder 'path/to/generated/image/folder'
  • 评估CLIP分类准确率:
CUDA_VISIBLE_DEVICES=0 python metrics/evaluate_clip_accuracy.py --base_folder '生成图像文件夹的路径'

致谢

我们感谢以下贡献者,我们的代码基于他们的工作:DiffusersConcept-AblationForget-Me-NotUCE

引用

如果您觉得本仓库有用,请考虑引用。

@article{lu2024mace,
 title={MACE: Mass Concept Erasure in Diffusion Models}, 
 author={Lu, Shilin and Wang, Zilan and Li, Leyang and Liu, Yanzhu and Kong, Adams Wai-Kin},
 journal={arXiv preprint arXiv:2403.06135},
 year={2024}
}

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多