Llama3-Chinese-Chat

Llama3-Chinese-Chat

基于Llama 3的中英双语优化大语言模型

Llama3-Chinese-Chat项目基于Meta-Llama-3-8B-Instruct模型开发,采用ORPO方法优化训练,大幅提升中英双语交互能力。该模型具备角色扮演、工具使用等功能,提供多种版本选择。最新v2.1版本在数学、角色扮演和函数调用方面性能显著提升,训练数据集扩充至10万对。项目同时提供Ollama模型和量化版本,便于快速部署使用。

Llama3Chinese自然语言处理人工智能语言模型Github开源项目

Llama3-Chinese-Chat

❗️❗️❗️NOTICE: The main branch contains the instructions for Llama3-8B-Chinese-Chat-v2.1. If you want to use or reproduce our Llama3-8B-Chinese-Chat-v1, please refer to the v1 branch; if you want to use or reproduce our Llama3-8B-Chinese-Chat-v2, please refer to the v2 branch.

❗️❗️❗️NOTICE: For optimal performance, we refrain from fine-tuning the model's identity. Thus, inquiries such as "Who are you" or "Who developed you" may yield random responses that are not necessarily accurate.

Updates

<details> <summary><b>Updates for Llama3-8B-Chinese-Chat-v2 [CLICK TO EXPAND]</b></summary> </details> <details> <summary><b>Updates for Llama3-8B-Chinese-Chat-v1 [CLICK TO EXPAND]</b></summary> </details>

Model Summary

Llama3-8B-Chinese-Chat is an instruction-tuned language model for Chinese & English users with various abilities such as roleplaying & tool-using built upon the Meta-Llama-3-8B-Instruct model.

Developed by: Shenzhi Wang (王慎执) and Yaowei Zheng (郑耀威)

  • License: Llama-3 License
  • Base Model: Meta-Llama-3-8B-Instruct
  • Model Size: 8.03B
  • Context length: 8K

1. Introduction

This is the first model specifically fine-tuned for Chinese & English user through ORPO [1] based on the Meta-Llama-3-8B-Instruct model.

Compared to the original Meta-Llama-3-8B-Instruct model, our Llama3-8B-Chinese-Chat-v1 model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses.

Compared to Llama3-8B-Chinese-Chat-v1, our Llama3-8B-Chinese-Chat-v2 model significantly increases the training data size (from 20K to 100K), which introduces great performance enhancement, especially in roleplay, tool using, and math.

[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).

Training framework: LLaMA-Factory.

Training details:

  • epochs: 2
  • learning rate: 3e-6
  • learning rate scheduler type: cosine
  • Warmup ratio: 0.1
  • cutoff len (i.e. context length): 8192
  • orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05
  • global batch size: 128
  • fine-tuning type: full parameters
  • optimizer: paged_adamw_32bit

2. Model Download

We provide various versions of our Llama3-8B-Chinese-Chat model, including:

3. Usage

  • Quick use via Ollama

    For the fastest use of our Llama3-8B-Chinese-Chat-v2.1 model, we recommend you use our model via Ollama. Specifically, you can install Ollama here, and then run the following command:

    ollama run wangshenzhi/llama3-8b-chinese-chat-ollama-q4 # to use the Ollama model for our 4bit-quantized GGUF Llama3-8B-Chinese-Chat-v2.1 # or ollama run wangshenzhi/llama3-8b-chinese-chat-ollama-q8 # to use the Ollama model for our 8bit-quantized GGUF Llama3-8B-Chinese-Chat-v2.1 # or ollama run wangshenzhi/llama3-8b-chinese-chat-ollama-fp16 # to use the Ollama model for our FP16 GGUF Llama3-8B-Chinese-Chat-v2.1
  • To use the BF16 version of our Llama3-8B-Chinese-Chat model

    You can run the following python script:

    from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "shenzhi-wang/Llama3-8B-Chinese-Chat" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "写一首诗吧"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=1024, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True))
  • To use the GGUF version of our Llama3-8B-Chinese-Chat model

    First, download the 8bit-quantized GGUF model or f16 GGUF model to your local machine.

    Then, run the following python script:

    from llama_cpp import Llama model = Llama( "/Your/Path/To/Llama3-8B-Chinese-Chat/GGUF/Model", verbose=False, n_gpu_layers=-1, ) system_prompt = "You are a helpful assistant." def generate_reponse(_model, _messages, _max_tokens=8192): _output = _model.create_chat_completion( _messages, stop=["<|eot_id|>", "<|end_of_text|>"], max_tokens=_max_tokens, )["choices"][0]["message"]["content"] return _output # The following are some examples messages = [ { "role": "system", "content": system_prompt, }, {"role": "user", "content": "写一首诗吧"}, ] print(generate_reponse(_model=model, _messages=messages))

4. Reproduce

To reproduce Llama3-8B-Chinese-Chat-v2.1 (to reproduce Llama3-8B-Chinese-Chat-v1, please refer to this link):

git clone https://github.com/hiyouga/LLaMA-Factory.git git reset --hard 25aeaae51b6d08a747e222bbcb27e75c4d56a856 # For Llama3-8B-Chinese-Chat-v1: 836ca0558698206bbf4e3b92533ad9f67c9f9864 cd

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多