plog

plog

轻量级且功能强大的C++日志库

plog是一个简洁高效的C++日志库,仅有约1000行代码。它支持跨平台使用,提供多种格式化器和输出器选项。plog特点包括线程安全、类型安全、Unicode支持等,且易于扩展。该库无需C++11,使用便捷,适合各类C++项目使用。

PlogC++日志库跨平台多线程Github开源项目

Plog - portable, simple and extensible C++ logging library

Pretty powerful logging library in about 1000 lines of code CI Build status CircleCI Build Status

image

Introduction

Hello log!

Plog is a C++ logging library that is designed to be as simple, small and flexible as possible. It is created as an alternative to existing large libraries and provides some unique features as CSV log format and wide string support.

Here is a minimal hello log sample:

#include <plog/Log.h> // Step1: include the headers #include "plog/Initializers/RollingFileInitializer.h" int main() { plog::init(plog::debug, "Hello.txt"); // Step2: initialize the logger // Step3: write log messages using a special macro // There are several log macros, use the macro you liked the most PLOGD << "Hello log!"; // short macro PLOG_DEBUG << "Hello log!"; // long macro PLOG(plog::debug) << "Hello log!"; // function-style macro // Also you can use LOG_XXX macro but it may clash with other logging libraries LOGD << "Hello log!"; // short macro LOG_DEBUG << "Hello log!"; // long macro LOG(plog::debug) << "Hello log!"; // function-style macro return 0; }

And its output:

2015-05-18 23:12:43.921 DEBUG [21428] [main@13] Hello log!
2015-05-18 23:12:43.968 DEBUG [21428] [main@14] Hello log!
2015-05-18 23:12:43.968 DEBUG [21428] [main@15] Hello log!

Features

Usage

To start using plog you need to make 3 simple steps.

Step 1: Adding includes

At first your project needs to know about plog. For that you have to:

  1. Add plog/include to the project include paths
  2. Add #include <plog/Log.h> into your cpp/h files (if you have precompiled headers it is a good place to add this include there)

Step 2: Initialization

The next step is to initialize the Logger. This is done by the following plog::init function:

Logger& init(Severity maxSeverity, const char/wchar_t* fileName, size_t maxFileSize = 0, int maxFiles = 0);

maxSeverity is the logger severity upper limit. All log messages have its own severity and if it is higher than the limit those messages are dropped. Plog defines the following severity levels:

enum Severity { none = 0, fatal = 1, error = 2, warning = 3, info = 4, debug = 5, verbose = 6 };

Note Messages with severity level none will always be printed.

The log format is determined automatically by fileName file extension:

The rolling behavior is controlled by maxFileSize and maxFiles parameters:

  • maxFileSize - the maximum log file size in bytes
  • maxFiles - a number of log files to keep

If one of them is zero then log rolling is disabled.

Sample:

plog::init(plog::warning, "c:\\logs\\log.csv", 1000000, 5);

Here the logger is initialized to write all messages with up to warning severity to a file in csv format. Maximum log file size is set to 1'000'000 bytes and 5 log files are kept.

Note See Custom initialization for advanced usage.

Step 3: Logging

Logging is performed with the help of special macros. A log message is constructed using stream output operators <<. Thus it is type-safe and extendable in contrast to a format string output.

Basic logging macros

This is the most used type of logging macros. They do unconditional logging.

Long macros:

PLOG_VERBOSE << "verbose"; PLOG_DEBUG << "debug"; PLOG_INFO << "info"; PLOG_WARNING << "warning"; PLOG_ERROR << "error"; PLOG_FATAL << "fatal"; PLOG_NONE << "none";

Short macros:

PLOGV << "verbose"; PLOGD << "debug"; PLOGI << "info"; PLOGW << "warning"; PLOGE << "error"; PLOGF << "fatal"; PLOGN << "none";

Function-style macros:

PLOG(severity) << "msg";

Conditional logging macros

These macros are used to do conditional logging. They accept a condition as a parameter and perform logging if the condition is true.

Long macros:

PLOG_VERBOSE_IF(cond) << "verbose"; PLOG_DEBUG_IF(cond) << "debug"; PLOG_INFO_IF(cond) << "info"; PLOG_WARNING_IF(cond) << "warning"; PLOG_ERROR_IF(cond) << "error"; PLOG_FATAL_IF(cond) << "fatal"; PLOG_NONE_IF(cond) << "none";

Short macros:

PLOGV_IF(cond) << "verbose"; PLOGD_IF(cond) << "debug"; PLOGI_IF(cond) << "info"; PLOGW_IF(cond) << "warning"; PLOGE_IF(cond) << "error"; PLOGF_IF(cond) << "fatal"; PLOGN_IF(cond) << "none";

Function-style macros:

PLOG_IF(severity, cond) << "msg";

Logger severity checker

In some cases there is a need to perform a group of actions depending on the current logger severity level. There is a special macro for that. It helps to minimize performance penalty when the logger is inactive.

IF_PLOG(severity)

Sample:

IF_PLOG(plog::debug) // we want to execute the following statements only at debug severity (and higher) { for (int i = 0; i < vec.size(); ++i) { PLOGD << "vec[" << i << "]: " << vec[i]; } }

Advanced usage

Changing severity at runtime

It is possible to set the maximum severity not only at the logger initialization time but at any time later. There are special accessor methods:

Severity Logger::getMaxSeverity() const; Logger::setMaxSeverity(Severity severity);

To get the logger use plog::get function:

Logger* get();

Sample:

plog::get()->setMaxSeverity(plog::debug);

Custom initialization

Non-typical log cases require the use of custom initialization. It is done by the following plog::init function:

Logger& init(Severity maxSeverity = none, IAppender* appender = NULL);

You have to construct an Appender parameterized with a Formatter and pass it to the plog::init function.

Note The appender lifetime should be static!

Sample:

static plog::ConsoleAppender<plog::TxtFormatter> consoleAppender; plog::init(plog::debug, &consoleAppender);

Multiple appenders

It is possible to have multiple Appenders within a single Logger. In such case log message will be written to all of them. Use the following method to accomplish that:

Logger& Logger::addAppender(IAppender* appender);

Sample:

static plog::RollingFileAppender<plog::CsvFormatter> fileAppender("MultiAppender.csv", 8000, 3); // Create the 1st appender. static plog::ConsoleAppender<plog::TxtFormatter> consoleAppender; // Create the 2nd appender. plog::init(plog::debug, &fileAppender).addAppender(&consoleAppender); // Initialize the logger with the both appenders.

Here the logger is initialized in the way when log messages are written to both a file and a console.

Refer to MultiAppender for a complete sample.

Multiple loggers

Multiple Loggers can be used simultaneously each with their own separate configuration. The Loggers differ by their instanceId (that is implemented as a template parameter). The default instanceId is zero. Initialization is done by the appropriate template plog::init functions:

Logger<instanceId>& init<instanceId>(...);

To get a logger use plog::get function (returns NULL if the logger is not initialized):

Logger<instanceId>* get<instanceId>();

All logging macros have their special versions that accept an instanceId parameter. These kind of macros have an underscore at the end:

PLOGD_(instanceId) << "debug"; PLOGD_IF_(instanceId, condition) << "conditional debug"; IF_PLOG_(instanceId, severity)

Sample:

enum // Define log instanceIds. Default is 0 and is omitted from this enum. { SecondLog = 1 }; int main() { plog::init(plog::debug, "MultiInstance-default.txt"); // Initialize the default logger instance. plog::init<SecondLog>(plog::debug, "MultiInstance-second.txt"); // Initialize the 2nd logger instance. // Write some messages to the default log. PLOGD << "Hello default log!"; // Write some messages to the 2nd log. PLOGD_(SecondLog) << "Hello second log!"; return 0; }

Refer to MultiInstance for a complete sample.

Share log instances across modules (exe, dll, so, dylib)

For applications that consist of several binary modules, plog instances can be local (each module has its own instance) or shared (all modules use the same instance). In case of shared you have to initialize plog only in one module, other modules will reuse that instance.

Sharing behavior is controlled by the following macros and is OS-dependent:

MacroOSBehavior
PLOG_GLOBALLinux/UnixShared
PLOG_LOCALLinux/UnixLocal
PLOG_EXPORTLinux/Unixn/a
PLOG_IMPORTLinux/Unixn/a
<default>Linux/UnixAccording to compiler settings
PLOG_GLOBALWindowsn/a
PLOG_LOCALWindowsLocal
PLOG_EXPORTWindowsShared (exports)
PLOG_IMPORTWindowsShared (imports)
<default>WindowsLocal

For sharing on Windows one module should use PLOG_EXPORT and others should use PLOG_IMPORT. Also be careful on Linux/Unix: if you don't specify sharing behavior it will be determined by compiler settings (-fvisibility).

Refer to Shared for a complete sample.

Chained loggers

A Logger can work as an Appender for another Logger. So you can chain several loggers together. This is useful for streaming log messages from a shared library to the main application binary.

Important: don't forget to specify PLOG_LOCAL sharing mode on Linux/Unix systems for this sample.

Sample:

// shared library // Function that initializes the logger in the shared library. extern "C" void EXPORT initialize(plog::Severity severity, plog::IAppender* appender) { plog::init(severity, appender); // Initialize the shared library logger. } // Function that produces a log message. extern "C" void EXPORT foo() { PLOGI << "Hello from shared lib!"; }
// main app // Functions imported from the shared library. extern "C" void initialize(plog::Severity severity, plog::IAppender* appender); extern "C" void foo(); int main() { plog::init(plog::debug, "ChainedApp.txt"); // Initialize the main logger. PLOGD << "Hello from app!"; // Write a log message. initialize(plog::debug, plog::get()); // Initialize the logger in the shared library. Note

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多