autogen-agi

autogen-agi

增强型多智能体协作系统探索AGI特性

AutoGen-AGI项目旨在推动自主智能体向AGI特性靠拢。基于Microsoft的AutoGen框架,该项目引入了智能体议会决策、高级群聊动态、对话连续性等增强功能。集成了先进的RAG技术和领域发现功能,支持自定义智能体开发。项目展示了智能体团队处理复杂任务的能力,如编写和执行其他智能体团队。

AutoGen人工智能多智能体系统AGI自然语言处理Github开源项目
<p align="center"><a><img width="367" height="367" src="https://github.com/metamind-ai/autogen-agi/assets/12631935/091b52b9-033c-48f6-ab61-1cff2e3f434f" alt="autogen-api logo"></a></p>

AutoGen AGI focuses on advancing the AutoGen framework for multi-agent conversational systems, with an eye towards characteristics of Artificial General Intelligence (AGI). This project introduces modifications to AutoGen, enhancing group chat dynamics among autonomous agents and increasing their proficiency in robustly handling complex tasks. The aim is to explore and incrementally advance agent behaviors, aligning them more closely with elements reminiscent of AGI.

Features

  • Enhanced Group Chat 💬: Modified AutoGen classes for advanced group chat functionalities.
  • Agent Council 🧙: Utilizes a council of agents for decision-making and speaker/actor selection. Based on a prompting technique explored in this blog post.
  • Conversation Continuity 🔄: Supports loading and continuation of chat histories.
  • Agent Team Awareness 👥: Each agent is aware of its role and the roles of its peers, enhancing team-based problem-solving.
  • Advanced RAG 📚: Built in Retrieval Augmented Generation (RAG) leveraging RAG-fusion and llm re-ranking implemented via llama_index.
  • Domain Discovery 🔍: Built in domain discovery for knowledge outside of llm training data.
  • Custom Agents 🌟: A growing list of customized agents.

Demo Transcript 📜

In the following link you can see some example output of the demo task, which is to get a team of agents to write and execute another team of autogen agents:

<p align="center"><a><img width="1080" src="https://github.com/metamind-ai/autogen-agi/assets/12631935/9458b016-9ef3-4bc4-a9c1-127c5c250abc" alt="agent council demo"></a></p> <p align="center"> <span>🧙</span><i>Example transcript of an "Agent Council" discussion </i><span>🧙</span> </p>

WARNING ⚠️

This project leverages agents that have access to execute code locally. In addition it is based on the extended context window of gpt-4-turbo, which can be costly. Proceed at your own risk.

Installation 🛠️

  • clone the project:
git clone git@github.com:metamind-ai/autogen-agi.git cd autogen-agi
  • (optional) create a conda environment:
conda create --name autogen-agi python=3.11 conda activate autogen-agi
  • install dependencies
pip install -r requirements.txt
  • add environment variables
    • copy .env.example to .env and fill in your values
      cp .env.example .env
    • copy OAI_CONFIG_LIST.json.example to OAI_CONFIG_LIST.json and fill in your OPENAI_API_KEY (this will most likely be needed for the example task)
      cp OAI_CONFIG_LIST.json.example OAI_CONFIG_LIST.json

All set!! 🎉✨

NOTE:

Getting Started 🚀

  • To attempt to reproduce the functionality seen in the demo:
python autogen_modified_group_chat.py
  • If you would first like to see an example of the research/domain discovery functionality:
python example_research.py
  • If you want to see an example of the RAG functionality:
python example_rag.py
  • If you want to compare the demo functionality to standard autogen:
python autogen_standard_group_chat.py

Methodology 🔍

The evolution of this project has kept to a simple methodology so far. Mainly:

  1. Test increasingly complex tasks.
  2. Observe the current limitations of the agents/framework.
  3. Add specific agents/features to overcome those limitations.
  4. Generalize features to be more scalable.

For an example of a future possible evolution: discover what team of agents seems most successful at accomplishing more and more complex tasks, then provide those agent prompts few-shot learning examples in a dynamic agent generation prompt.

Contributing 🤝

Contributions are welcome! Please read our contributing guidelines for instructions on how to make a contribution.

TODO 📝

  • Expand research and discovery to support more resources (such as arxiv) and select the resource dynamically.
  • Support chat history overflow. This would reflect a MemGPT like system where the overflow history would stay summarized in the context with relevant overflow data pulled in (via RAG) as needed.
  • If possible, support smaller context windows and open source LLMs.
  • Add ability to dynamically inject agents as needed.
  • Add ability to spawn off agent teams as needed.
  • Add support for communication and resource sharing between agent teams.

Support ⭐

Love what we're building with AutoGen AGI? Star this project on GitHub! Your support not only motivates us, but each star brings more collaborators to this venture. More collaboration means accelerating our journey towards advanced AI and closer to AGI. Let's push the boundaries of AI together! ⭐

News 📰

License

MIT License

Copyright (c) 2023 MetaMind Solutions

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多