autogen-agi

autogen-agi

增强型多智能体协作系统探索AGI特性

AutoGen-AGI项目旨在推动自主智能体向AGI特性靠拢。基于Microsoft的AutoGen框架,该项目引入了智能体议会决策、高级群聊动态、对话连续性等增强功能。集成了先进的RAG技术和领域发现功能,支持自定义智能体开发。项目展示了智能体团队处理复杂任务的能力,如编写和执行其他智能体团队。

AutoGen人工智能多智能体系统AGI自然语言处理Github开源项目
<p align="center"><a><img width="367" height="367" src="https://github.com/metamind-ai/autogen-agi/assets/12631935/091b52b9-033c-48f6-ab61-1cff2e3f434f" alt="autogen-api logo"></a></p>

AutoGen AGI focuses on advancing the AutoGen framework for multi-agent conversational systems, with an eye towards characteristics of Artificial General Intelligence (AGI). This project introduces modifications to AutoGen, enhancing group chat dynamics among autonomous agents and increasing their proficiency in robustly handling complex tasks. The aim is to explore and incrementally advance agent behaviors, aligning them more closely with elements reminiscent of AGI.

Features

  • Enhanced Group Chat 💬: Modified AutoGen classes for advanced group chat functionalities.
  • Agent Council 🧙: Utilizes a council of agents for decision-making and speaker/actor selection. Based on a prompting technique explored in this blog post.
  • Conversation Continuity 🔄: Supports loading and continuation of chat histories.
  • Agent Team Awareness 👥: Each agent is aware of its role and the roles of its peers, enhancing team-based problem-solving.
  • Advanced RAG 📚: Built in Retrieval Augmented Generation (RAG) leveraging RAG-fusion and llm re-ranking implemented via llama_index.
  • Domain Discovery 🔍: Built in domain discovery for knowledge outside of llm training data.
  • Custom Agents 🌟: A growing list of customized agents.

Demo Transcript 📜

In the following link you can see some example output of the demo task, which is to get a team of agents to write and execute another team of autogen agents:

<p align="center"><a><img width="1080" src="https://github.com/metamind-ai/autogen-agi/assets/12631935/9458b016-9ef3-4bc4-a9c1-127c5c250abc" alt="agent council demo"></a></p> <p align="center"> <span>🧙</span><i>Example transcript of an "Agent Council" discussion </i><span>🧙</span> </p>

WARNING ⚠️

This project leverages agents that have access to execute code locally. In addition it is based on the extended context window of gpt-4-turbo, which can be costly. Proceed at your own risk.

Installation 🛠️

  • clone the project:
git clone git@github.com:metamind-ai/autogen-agi.git cd autogen-agi
  • (optional) create a conda environment:
conda create --name autogen-agi python=3.11 conda activate autogen-agi
  • install dependencies
pip install -r requirements.txt
  • add environment variables
    • copy .env.example to .env and fill in your values
      cp .env.example .env
    • copy OAI_CONFIG_LIST.json.example to OAI_CONFIG_LIST.json and fill in your OPENAI_API_KEY (this will most likely be needed for the example task)
      cp OAI_CONFIG_LIST.json.example OAI_CONFIG_LIST.json

All set!! 🎉✨

NOTE:

Getting Started 🚀

  • To attempt to reproduce the functionality seen in the demo:
python autogen_modified_group_chat.py
  • If you would first like to see an example of the research/domain discovery functionality:
python example_research.py
  • If you want to see an example of the RAG functionality:
python example_rag.py
  • If you want to compare the demo functionality to standard autogen:
python autogen_standard_group_chat.py

Methodology 🔍

The evolution of this project has kept to a simple methodology so far. Mainly:

  1. Test increasingly complex tasks.
  2. Observe the current limitations of the agents/framework.
  3. Add specific agents/features to overcome those limitations.
  4. Generalize features to be more scalable.

For an example of a future possible evolution: discover what team of agents seems most successful at accomplishing more and more complex tasks, then provide those agent prompts few-shot learning examples in a dynamic agent generation prompt.

Contributing 🤝

Contributions are welcome! Please read our contributing guidelines for instructions on how to make a contribution.

TODO 📝

  • Expand research and discovery to support more resources (such as arxiv) and select the resource dynamically.
  • Support chat history overflow. This would reflect a MemGPT like system where the overflow history would stay summarized in the context with relevant overflow data pulled in (via RAG) as needed.
  • If possible, support smaller context windows and open source LLMs.
  • Add ability to dynamically inject agents as needed.
  • Add ability to spawn off agent teams as needed.
  • Add support for communication and resource sharing between agent teams.

Support ⭐

Love what we're building with AutoGen AGI? Star this project on GitHub! Your support not only motivates us, but each star brings more collaborators to this venture. More collaboration means accelerating our journey towards advanced AI and closer to AGI. Let's push the boundaries of AI together! ⭐

News 📰

License

MIT License

Copyright (c) 2023 MetaMind Solutions

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多