RLAIF-V

RLAIF-V

多模态大模型对齐的开源AI反馈框架

RLAIF-V项目提出了一种新的多模态大模型对齐框架,通过开源AI反馈实现了超越GPT-4V的可信度。该框架利用高质量反馈数据和在线反馈学习算法,有效减少模型幻觉,提高学习效率和性能。项目开源的代码、模型权重和数据集为多模态人工智能研究提供了重要资源。

RLAIF-V多模态大语言模型人工智能反馈可信性开源Github开源项目
<div align="center" style="font-size: 15pt"> <img src="examples/logo.png" width="30%" alt="RLAIF-V" />

Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness

<a href='https://arxiv.org/abs/2405.17220'><img src='https://img.shields.io/badge/Paper-PDF-purple'></a> <a href='https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset'><img src='https://img.shields.io/badge/Dataset-HF-Green'></a> <a href='https://huggingface.co/openbmb/RLAIF-V-7B'><img src='https://img.shields.io/badge/Model-7B-orange'></a> <a href='https://huggingface.co/openbmb/RLAIF-V-12B'><img src='https://img.shields.io/badge/Model-12B-orange'></a>

<h4 align="center"> <p> <a href="README_zh.md">中文</a> | <b>English</b> </p> </h4> </div>

🎊 News <!-- omit in toc -->

  • [2024.05.28] 📃 Our paper is accesible at arXiv now!
  • [2024.05.20] 🔥 Our RLAIF-V-Dataset is used for training MiniCPM-Llama3-V 2.5, which represents the first end-side GPT-4V level MLLM!
  • [2024.05.20] We open-source the code, weights (7B, 12B) and data of RLAIF-V!

📜 Brief Introduction <!-- omit in toc -->

We introduce RLAIF-V, a novel framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness. RLAIF-V maximally exploits the open-source feedback from two key perspectives, including high-quality feedback data and online feedback learning algorithm. Notable features of RLAIF-V include:

  • 💪 Super GPT-4V Trustworthiness via Open-source Feedback. By learning from open-source AI feedback, RLAIF-V 12B achieves super GPT-4V trustworthiness in both generative and discriminative tasks.
<table align="center"> <p align="center"> <img src="examples/introduction1.jpg" width="80%" alt="introduction1" /> </p> </table>
  • 🤝 High-quality Generalizable Feedback Data. The feedback data usesed by RLAIF-V effectively reduce the hallucination of different MLLMs.
<table align="center"> <p align="center"> <img src="examples/introduction3.jpg" width="80%" alt="introduction3" /> </p> </table>
  • ⚡️ Efficient Feedback Learning with Iterative Alignment. RLAIF-V exihibts both better learning efficiency and higher performance compared with the non-iterative approach.
<table align="center"> <p align="center"> <img src="examples/introduction2.png" width="80%" alt="introduction2" /> </p> </table>

📌Contents <!-- omit in toc -->

Dataset

We present the RLAIF-V Dataset, which is an AI generated preference dataset covering diverse range of tasks and domains. This open-source multimodal preference datasets contains more than 30K high-quality comparison pairs.

Install

  1. Clone this repository and navigate to RLAIF-V folder
git clone https://github.com/RLHF-V/RLAIF-V.git cd RLAIF-V
  1. Install package
conda create -n rlaifv python=3.10 -y conda activate rlaifv pip install -e .
  1. Install required spaCy model
wget https://github.com/explosion/spacy-models/releases/download/en_core_web_trf-3.7.3/en_core_web_trf-3.7.3.tar.gz pip install en_core_web_trf-3.7.3.tar.gz

Model Weights

ModelDescriptionDownload
RLAIF-V 7BThe most trustworthy variant on LLaVA 1.5🤗
RLAIF-V 12BBased on OmniLMM-12B, achieving super GPT-4V trustworthiness.🤗

Inference

We provide a simple example to show how to use RLAIF-V.

from chat import RLAIFVChat, img2base64 chat_model = RLAIFVChat('openBMB/RLAIF-V-7B') # or 'openBMB/RLAIF-V-12B' image_path="./examples/test.jpeg" msgs = "Describe in detail the people in the picture." inputs = {"image": image_path, "question": msgs} answer = chat_model.chat(inputs) print(answer)

You can also run this example by executing the following script:

python chat.py
<details> <summary> <b>Inputs and expected outputs of the example</b> </summary> <div align="center"> <img src="examples/test.jpeg" width="500px"> </div>

Question:

Why did the car in the picture stop?

Expected outputs:

In the picture, a car stopped on the road due to the presence of a sheep on the roadway. The car likely stopped to allow the sheep to safely move out of the way or avoid any potential accidents with the animal. This situation highlights the importance of being cautious and attentive while driving, especially in areas where animals may roam near roads.

</details>

Train

  1. Prepare data (Optional)

If you can access huggingface dataset, you can skip this step, we will automatically download the RLAIF-V Dataset.

If you already downloaded the dataset, you can replace 'openbmb/RLAIF-V-Dataset' to your dataset path here at Line 38.

  1. Start training

Run the following command to start training.

bash ./script/train/llava15_train.sh

Evaluation

Object HalBench

  1. Prepare COCO2014 annotations

The evaluation of Object HalBench relies on the caption and segmentation annotations from the COCO2014 dataset. Please first download the COCO2014 dataset from the COCO dataset's official website.

mkdir coco2014 cd coco2014 wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip unzip annotations_trainval2014.zip
  1. Inference, evaluation, and summarization

Please replace {YOUR_OPENAI_API_KEY} with a valid OpenAI api-key.

# cd RLAIF-V bash ./script/eval/eval_rlaif_objhal.sh ./RLAIF-V_weight ./results/RLAIF-V ./coco2014/annotations {YOUR_OPENAI_API_KEY}

MMHal Bench

  1. Prepare MMHal Data

Please download the MMHal evaluation data here, and save the file in eval/data.

  1. Run the following script to generate for MMHal Bench:
# cd RLAIF-V bash ./script/eval/eval_rlaifv_mmhal.sh ./RLAIF-V_weight ./results/RLAIF-V {YOUR_OPENAI_API_KEY}

Licenses <!-- omit in toc -->

Code License Data License

Usage and License Notices: The data, code, and checkpoint are intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna, and Chat GPT. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.

Acknowledgement <!-- omit in toc -->

  • RLHF-V: The codebase we built upon.
  • LLaVA: The instruction model and labeler model of RLAIF-V-7B.
  • MiniCPM-V: The instruction model and labeler model of RLAIF-V-12B.

Citation

If you find our model/code/data/paper helpful, please consider cite our papers 📝 and star us ⭐️!

@article{yu2023rlhf, title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback}, author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others}, journal={arXiv preprint arXiv:2312.00849}, year={2023} } @article{yu2024rlaifv, title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness}, author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong}, journal={arXiv preprint arXiv:2405.17220}, year={2024}, }

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多