RLAIF-V

RLAIF-V

多模态大模型对齐的开源AI反馈框架

RLAIF-V项目提出了一种新的多模态大模型对齐框架,通过开源AI反馈实现了超越GPT-4V的可信度。该框架利用高质量反馈数据和在线反馈学习算法,有效减少模型幻觉,提高学习效率和性能。项目开源的代码、模型权重和数据集为多模态人工智能研究提供了重要资源。

RLAIF-V多模态大语言模型人工智能反馈可信性开源Github开源项目
<div align="center" style="font-size: 15pt"> <img src="examples/logo.png" width="30%" alt="RLAIF-V" />

Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness

<a href='https://arxiv.org/abs/2405.17220'><img src='https://img.shields.io/badge/Paper-PDF-purple'></a> <a href='https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset'><img src='https://img.shields.io/badge/Dataset-HF-Green'></a> <a href='https://huggingface.co/openbmb/RLAIF-V-7B'><img src='https://img.shields.io/badge/Model-7B-orange'></a> <a href='https://huggingface.co/openbmb/RLAIF-V-12B'><img src='https://img.shields.io/badge/Model-12B-orange'></a>

<h4 align="center"> <p> <a href="README_zh.md">中文</a> | <b>English</b> </p> </h4> </div>

🎊 News <!-- omit in toc -->

  • [2024.05.28] 📃 Our paper is accesible at arXiv now!
  • [2024.05.20] 🔥 Our RLAIF-V-Dataset is used for training MiniCPM-Llama3-V 2.5, which represents the first end-side GPT-4V level MLLM!
  • [2024.05.20] We open-source the code, weights (7B, 12B) and data of RLAIF-V!

📜 Brief Introduction <!-- omit in toc -->

We introduce RLAIF-V, a novel framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness. RLAIF-V maximally exploits the open-source feedback from two key perspectives, including high-quality feedback data and online feedback learning algorithm. Notable features of RLAIF-V include:

  • 💪 Super GPT-4V Trustworthiness via Open-source Feedback. By learning from open-source AI feedback, RLAIF-V 12B achieves super GPT-4V trustworthiness in both generative and discriminative tasks.
<table align="center"> <p align="center"> <img src="examples/introduction1.jpg" width="80%" alt="introduction1" /> </p> </table>
  • 🤝 High-quality Generalizable Feedback Data. The feedback data usesed by RLAIF-V effectively reduce the hallucination of different MLLMs.
<table align="center"> <p align="center"> <img src="examples/introduction3.jpg" width="80%" alt="introduction3" /> </p> </table>
  • ⚡️ Efficient Feedback Learning with Iterative Alignment. RLAIF-V exihibts both better learning efficiency and higher performance compared with the non-iterative approach.
<table align="center"> <p align="center"> <img src="examples/introduction2.png" width="80%" alt="introduction2" /> </p> </table>

📌Contents <!-- omit in toc -->

Dataset

We present the RLAIF-V Dataset, which is an AI generated preference dataset covering diverse range of tasks and domains. This open-source multimodal preference datasets contains more than 30K high-quality comparison pairs.

Install

  1. Clone this repository and navigate to RLAIF-V folder
git clone https://github.com/RLHF-V/RLAIF-V.git cd RLAIF-V
  1. Install package
conda create -n rlaifv python=3.10 -y conda activate rlaifv pip install -e .
  1. Install required spaCy model
wget https://github.com/explosion/spacy-models/releases/download/en_core_web_trf-3.7.3/en_core_web_trf-3.7.3.tar.gz pip install en_core_web_trf-3.7.3.tar.gz

Model Weights

ModelDescriptionDownload
RLAIF-V 7BThe most trustworthy variant on LLaVA 1.5🤗
RLAIF-V 12BBased on OmniLMM-12B, achieving super GPT-4V trustworthiness.🤗

Inference

We provide a simple example to show how to use RLAIF-V.

from chat import RLAIFVChat, img2base64 chat_model = RLAIFVChat('openBMB/RLAIF-V-7B') # or 'openBMB/RLAIF-V-12B' image_path="./examples/test.jpeg" msgs = "Describe in detail the people in the picture." inputs = {"image": image_path, "question": msgs} answer = chat_model.chat(inputs) print(answer)

You can also run this example by executing the following script:

python chat.py
<details> <summary> <b>Inputs and expected outputs of the example</b> </summary> <div align="center"> <img src="examples/test.jpeg" width="500px"> </div>

Question:

Why did the car in the picture stop?

Expected outputs:

In the picture, a car stopped on the road due to the presence of a sheep on the roadway. The car likely stopped to allow the sheep to safely move out of the way or avoid any potential accidents with the animal. This situation highlights the importance of being cautious and attentive while driving, especially in areas where animals may roam near roads.

</details>

Train

  1. Prepare data (Optional)

If you can access huggingface dataset, you can skip this step, we will automatically download the RLAIF-V Dataset.

If you already downloaded the dataset, you can replace 'openbmb/RLAIF-V-Dataset' to your dataset path here at Line 38.

  1. Start training

Run the following command to start training.

bash ./script/train/llava15_train.sh

Evaluation

Object HalBench

  1. Prepare COCO2014 annotations

The evaluation of Object HalBench relies on the caption and segmentation annotations from the COCO2014 dataset. Please first download the COCO2014 dataset from the COCO dataset's official website.

mkdir coco2014 cd coco2014 wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip unzip annotations_trainval2014.zip
  1. Inference, evaluation, and summarization

Please replace {YOUR_OPENAI_API_KEY} with a valid OpenAI api-key.

# cd RLAIF-V bash ./script/eval/eval_rlaif_objhal.sh ./RLAIF-V_weight ./results/RLAIF-V ./coco2014/annotations {YOUR_OPENAI_API_KEY}

MMHal Bench

  1. Prepare MMHal Data

Please download the MMHal evaluation data here, and save the file in eval/data.

  1. Run the following script to generate for MMHal Bench:
# cd RLAIF-V bash ./script/eval/eval_rlaifv_mmhal.sh ./RLAIF-V_weight ./results/RLAIF-V {YOUR_OPENAI_API_KEY}

Licenses <!-- omit in toc -->

Code License Data License

Usage and License Notices: The data, code, and checkpoint are intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna, and Chat GPT. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.

Acknowledgement <!-- omit in toc -->

  • RLHF-V: The codebase we built upon.
  • LLaVA: The instruction model and labeler model of RLAIF-V-7B.
  • MiniCPM-V: The instruction model and labeler model of RLAIF-V-12B.

Citation

If you find our model/code/data/paper helpful, please consider cite our papers 📝 and star us ⭐️!

@article{yu2023rlhf, title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback}, author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others}, journal={arXiv preprint arXiv:2312.00849}, year={2023} } @article{yu2024rlaifv, title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness}, author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong}, journal={arXiv preprint arXiv:2405.17220}, year={2024}, }

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多