alphagen

alphagen

强化学习驱动的自动化 Alpha 因子生成框架

AlphaGen 是一个基于强化学习的自动化 Alpha 因子生成框架。该项目提供内置 Alpha 计算管道和外部接口,支持 PPO 算法训练。AlphaGen 还实现了基于遗传规划和深度符号回归的基准方法,以及实验性交易策略。这一工具旨在为量化投资研究和实践提供 Alpha 因子自动生成和优化的解决方案。

AlphaGen强化学习因子生成量化投资机器学习Github开源项目

AlphaGen

<p align="center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/add3e9fd-ffc8-4968-b7f7-4505221598ed.jpg" width=275 /> </p>

使用强化学习自动生成公式化alpha。

论文《通过强化学习生成协同公式化Alpha集合》已被KDD 2023接收,应用数据科学(ADS)方向。

论文可在ACM数字图书馆arXiv上获取。

如何复现?

请注意,您可以选择使用我们内置的alpha计算流程(见选项1),或实现适配器以连接您自己的流程(见选项2)。

选项1:股票数据准备

内置流程需要Qlib库和本地存储的股票数据。

  • 请务必阅读!我们需要Qlib提供的部分元数据(但不包括实际的股票价格/交易量数据),因此请先按照Qlib的数据准备流程进行操作。
  • 我们使用的实际股票数据来自baostock,这是出于对Qlib使用的数据源的时效性和真实性的考虑。
  • 可以通过运行脚本data_collection/fetch_baostock_data.py来下载数据。默认情况下,新下载的数据保存在~/.qlib/qlib_data/cn_data_baostock_fwdadj中。可以根据具体需求自定义此路径,但请确保在加载数据时使用正确的路径(在alphagen_qlib/stock_data.py中,函数StockData._init_qlib中,应将路径传递给qlib,使用qlib.init(provider_uri=path))。

选项2:适配外部流程

如果您有更好的alpha计算实现,可以实现alphagen.data.calculator.AlphaCalculator的适配器。接口定义如下:

class AlphaCalculator(metaclass=ABCMeta): @abstractmethod def calc_single_IC_ret(self, expr: Expression) -> float: '计算单个alpha与预定义目标之间的IC。' @abstractmethod def calc_single_rIC_ret(self, expr: Expression) -> float: '计算单个alpha与预定义目标之间的Rank IC。' @abstractmethod def calc_single_all_ret(self, expr: Expression) -> Tuple[float, float]: '计算单个alpha与预定义目标之间的IC和Rank IC。' @abstractmethod def calc_mutual_IC(self, expr1: Expression, expr2: Expression) -> float: '计算两个alpha之间的IC。' @abstractmethod def calc_pool_IC_ret(self, exprs: List[Expression], weights: List[float]) -> float: '首先线性组合alpha,' '然后计算该线性组合与预定义目标之间的IC。' @abstractmethod def calc_pool_rIC_ret(self, exprs: List[Expression], weights: List[float]) -> float: '首先线性组合alpha,' '然后计算该线性组合与预定义目标之间的Rank IC。' @abstractmethod def calc_pool_all_ret(self, exprs: List[Expression], weights: List[float]) -> Tuple[float, float]: '首先线性组合alpha,' '然后计算该线性组合与预定义目标之间的IC和Rank IC。'

提醒:不同alpha评估的值可能有显著不同的尺度,我们建议在组合前对它们进行归一化。

运行前

我们实验的所有主要组件都位于train_maskable_ppo.py中。

以下参数可能有助于您构建AlphaCalculator

  • instruments(股票代码集合)
  • start_time和end_time(每个数据集的数据范围)
  • target(目标股票趋势,例如20天收益率)

以下参数将定义一次强化学习运行:

  • batch_size(PPO批量大小)
  • features_extractor_kwargs(LSTM共享网络的参数)
  • device(PyTorch设备)
  • save_path(检查点保存路径)
  • tensorboard_log(TensorBoard日志路径)

运行!

python train_maskable_ppo.py --seed=种子 --pool=池容量 --code=股票代码 --step=步数

其中,种子是随机种子,例如11,2池容量是组合模型的大小,步数是强化学习步骤的限制。

运行后

  • 模型检查点和alpha池位于save_path
  • Tensorboard日志位于tensorboard_log

基准方法

基于GP的方法

gplearn实现了遗传规划,这是符号回归常用的方法。我们维护了gplearn的修改版本,使其与我们的任务兼容。相应的实验脚本是gp.py

深度符号回归

DSO是一个成熟的深度学习框架,用于符号优化任务。我们维护了DSO的最小版本,使其与我们的任务兼容。相应的实验脚本是dso.py

仓库结构

  • /alphagen包含了启动alpha挖掘流程的基本数据结构和核心模块;
  • /alphagen_qlib包含了用于数据准备的qlib特定API;
  • /alphagen_generic包含了为我们的基准方法设计的数据结构和工具,基本上遵循gplearn的API,但针对量化流程进行了修改;
  • /gplearn/dso包含了我们基准方法的修改版本。

交易(实验性)

我们基于Qlib实现了一些交易策略。请参阅backtest.pytrade_decision.py获取演示。

引用我们的工作

@inproceedings{alphagen, author = {Yu, Shuo and Xue, Hongyan and Ao, Xiang and Pan, Feiyang and He, Jia and Tu, Dandan and He, Qing}, title = {Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning}, year = {2023}, doi = {10.1145/3580305.3599831}, booktitle = {Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining}, }

贡献

欢迎提交问题或拉取请求。

贡献者

本工作由中国科学院计算技术研究所智能信息处理实验室的MLDM研究组维护。

维护者包括:

感谢以下贡献者:

感谢以下对我们项目进行深入研究的人:

  • 因子选股系列之九十五:DFQ强化学习因子组合挖掘系统

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多