cornac

cornac

多模态推荐系统比较框架

Cornac是一个多模态推荐系统比较框架,支持文本、图像等辅助数据。它便于快速实验和实现新模型,兼容TensorFlow、PyTorch等库。Cornac实现了协同过滤、内容推荐等多种算法,支持高效近似最近邻搜索。框架还提供简单的模型部署方式,有助于构建推荐系统应用。

Cornac推荐系统多模态辅助数据机器学习Github开源项目

Cornac

Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxiliary data (e.g., item descriptive text and image, social network, etc). Cornac enables fast experiments and straightforward implementations of new models. It is highly compatible with existing machine learning libraries (e.g., TensorFlow, PyTorch).

Cornac is one of the frameworks recommended by ACM RecSys 2023 for the evaluation and reproducibility of recommendation algorithms.

Quick Links

Website | Documentation | Tutorials | Examples | Models | Datasets | Paper | Preferred.AI

.github/workflows/python-package.yml CircleCI AppVeyor Codecov Docs <br /> Release PyPI Conda Conda Recipe Downloads <br /> Python Conda Platforms License

Installation

Currently, we are supporting Python 3. There are several ways to install Cornac:

  • From PyPI (recommended):

    pip3 install cornac
  • From Anaconda:

    conda install cornac -c conda-forge
  • From the GitHub source (for latest updates):

    pip3 install Cython numpy scipy pip3 install git+https://github.com/PreferredAI/cornac.git

Note:

Additional dependencies required by models are listed here.

Some algorithm implementations use OpenMP to support multi-threading. For Mac OS users, in order to run those algorithms efficiently, you might need to install gcc from Homebrew to have an OpenMP compiler:

brew install gcc | brew link gcc

Getting started: your first Cornac experiment

<p align="center"><i>Flow of an Experiment in Cornac</i></p>
import cornac from cornac.eval_methods import RatioSplit from cornac.models import MF, PMF, BPR from cornac.metrics import MAE, RMSE, Precision, Recall, NDCG, AUC, MAP # load the built-in MovieLens 100K and split the data based on ratio ml_100k = cornac.datasets.movielens.load_feedback() rs = RatioSplit(data=ml_100k, test_size=0.2, rating_threshold=4.0, seed=123) # initialize models, here we are comparing: Biased MF, PMF, and BPR mf = MF(k=10, max_iter=25, learning_rate=0.01, lambda_reg=0.02, use_bias=True, seed=123) pmf = PMF(k=10, max_iter=100, learning_rate=0.001, lambda_reg=0.001, seed=123) bpr = BPR(k=10, max_iter=200, learning_rate=0.001, lambda_reg=0.01, seed=123) models = [mf, pmf, bpr] # define metrics to evaluate the models metrics = [MAE(), RMSE(), Precision(k=10), Recall(k=10), NDCG(k=10), AUC(), MAP()] # put it together in an experiment, voilà! cornac.Experiment(eval_method=rs, models=models, metrics=metrics, user_based=True).run()

Output:

MAERMSEAUCMAPNDCG@10Precision@10Recall@10Train (s)Test (s)
MF0.74300.89980.74450.05480.07610.06750.04630.131.57
PMF0.75340.91380.77440.06710.09690.08130.06392.181.64
BPRN/AN/A0.86950.10420.15000.11100.11953.741.49

Model serving

Here, we provide a simple way to serve a Cornac model by launching a standalone web service with Flask. It is very handy for testing or creating a demo application. First, we install the dependency:

$ pip3 install Flask

Supposed that we want to serve the trained BPR model from previous example, we need to save it:

bpr.save("save_dir", save_trainset=True)

After that, the model can be deployed easily by running Cornac serving app as follows:

$ FLASK_APP='cornac.serving.app' \ MODEL_PATH='save_dir/BPR' \ MODEL_CLASS='cornac.models.BPR' \ flask run --host localhost --port 8080 # Running on http://localhost:8080

Here we go, our model service is now ready. Let's get top-5 item recommendations for the user "63":

$ curl -X GET "http://localhost:8080/recommend?uid=63&k=5&remove_seen=false" # Response: {"recommendations": ["50", "181", "100", "258", "286"], "query": {"uid": "63", "k": 5, "remove_seen": false}}

If we want to remove seen items during training, we need to provide TRAIN_SET which has been saved with the model earlier, when starting the serving app. We can also leverage WSGI server for model deployment in production. Please refer to this guide for more details.

Efficient retrieval with ANN search

One important aspect of deploying recommender model is efficient retrieval via Approximate Nearest Neighbor (ANN) search in vector space. Cornac integrates several vector similarity search frameworks for the ease of deployment. This example demonstrates how ANN search will work seamlessly with any recommender models supporting it (e.g., matrix factorization).

Supported FrameworkCornac WrapperExample
spotify/annoyAnnoyANNquick-start, deep-dive
meta/faissFaissANNquick-start, deep-dive
nmslib/hnswlibHNSWLibANNquick-start, hnsw-lib, deep-dive
google/scannScaNNANNquick-start, deep-dive

Models

The table below lists the recommendation models/algorithms featured in Cornac. Examples are provided as quick-start showcasing an easy to run script, or as deep-dive explaining the math and intuition behind each model. Why don't you join us to lengthen the list?

YearModel and PaperTypeEnvironmentExample
2024Hypergraphs with Attention on Reviews (HypAR), docs, paperHybrid / Sentiment / Explainablerequirements, CPU / GPUquick-start
2022Disentangled Multimodal Representation Learning for Recommendation (DMRL), docs, paperContent-Based / Text & Imagerequirements, CPU / GPUquick-start
2021Bilateral Variational Autoencoder for Collaborative Filtering (BiVAECF), docs, paperCollaborative Filtering / Content-Basedrequirements, CPU / GPUquick-start, deep-dive
Causal Inference for Visual Debiasing in Visually-Aware Recommendation (CausalRec), docs, paperContent-Based / Imagerequirements, CPU / GPUquick-start
Explainable Recommendation with Comparative Constraints on Product Aspects (ComparER), docs, paperExplainableCPUquick-start
2020Adversarial Multimedia Recommendation (AMR), docs, paperContent-Based / Imagerequirements, CPU / GPUquick-start
Hybrid Deep Representation Learning of Ratings and Reviews (HRDR), docs, paperContent-Based / Textrequirements, CPU / GPUquick-start
LightGCN: Simplifying and Powering Graph Convolution Network, docs, paperCollaborative Filteringrequirements, CPU / GPUquick-start
Predicting Temporal Sets with Deep Neural Networks (DNNTSP), docs, paperNext-Basketrequirements, CPU / GPUquick-start
Recency Aware Collaborative Filtering (UPCF), docs, paperNext-Basketrequirements, CPUquick-start
Temporal-Item-Frequency-based User-KNN (TIFUKNN), docs, paperNext-BasketCPUquick-start
Variational Autoencoder for Top-N Recommendations (RecVAE), docs, paperCollaborative Filteringrequirements, CPU / GPUquick-start
2019Correlation-Sensitive Next-Basket Recommendation (Beacon), docs, paperNext-Basketrequirements, CPU / GPUquick-start
[Embarrassingly Shallow Autoencoders for Sparse Data

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多