PaddleTS

PaddleTS

基于飞桨的开源时序分析库 提供全面深度学习模型

PaddleTS是基于飞桨框架的时序建模库,专注深度学习模型。它提供统一数据结构和基础功能封装,内置多种先进模型和数据转换工具。支持自动调优、第三方集成、GPU加速和集成学习。涵盖预测、表征、异常检测等任务,为时序分析提供全面解决方案。

PaddleTS时序建模深度学习PaddlePaddlePython库Github开源项目

English | [简体中文](https://github.com/PaddlePaddle/PaddleTS/blob/release_v1.1/./README_en.md

<p align="center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/c091e707-cbbc-4be8-877c-fa421fa26a07.png" align="middle" width="500"> <p>
<p align="center"> <a href="https://github.com/PaddlePaddle/PaddleTS/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleTS?color=9ea"></a> <a href=""><img src="https://yellow-cdn.veclightyear.com/0a4dffa0/49473528-7965-4922-930b-802509ca3abd.svg"></a> <a href=""><img src="https://yellow-cdn.veclightyear.com/0a4dffa0/fcc56409-e386-46ee-9c51-2ea38494a965.svg"></a> <a href="https://github.com/PaddlePaddle/PaddleTS/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleTS?color=3af"></a> <a href="https://github.com/PaddlePaddle/PaddleTS/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleTS?color=9cc"></a> </p>

PaddleTS is a user-friendly Python library for deep time series modeling based on the PaddlePaddle deep learning framework. It focuses on industry-leading deep models, aiming to provide domain experts and industry users with scalable time series modeling capabilities and a convenient user experience. The main features of PaddleTS include:

  • Designing a unified data structure to express diverse time series data, supporting single-target and multi-target variables, and multiple types of covariates
  • Encapsulating basic model functionalities such as data loading, callback settings, loss functions, training process control, and other common methods, helping developers focus on network structure itself during new model development
  • Built-in industry-leading deep learning models, including time series prediction models like NBEATS, NHiTS, LSTNet, TCN, Transformer, DeepAR, Informer, time series representation models like TS2Vec and CoST, as well as time series anomaly detection models like Autoencoder, VAE, and AnomalyTransformer
  • Built-in diverse data transformation operators, supporting data processing and transformation, including missing value imputation, anomaly handling, normalization, and time-related covariate extraction
  • Built-in classic data analysis operators, helping developers easily implement data exploration, including data statistical information and data summary functions
  • AutoTS for automatic model tuning, supporting multiple types of HPO (Hyper Parameter Optimization) algorithms, showing significant tuning effects on multiple models and datasets
  • Automatic integration of third-party machine learning models and data transformation modules, supporting time series applications from libraries such as sklearn and pyod
  • Support for running PaddlePaddle-based time series models on GPU devices
  • Time series model ensemble learning capability

📣 Recent Updates

  • 📚 "High-Precision Time Series Analysis Starriver Zero-Code Production Line Now Available", bringing together 3 major time series analysis scenario tasks, covering 11 cutting-edge time series models. High-precision multi-model fusion time series featured production line, automatically searching for the optimal model combination adaptive to different scenarios, improving time series prediction accuracy by about 20% and time series anomaly detection accuracy by 5% in real industrial application scenarios. Supports cloud-based and local service deployment and pure offline use. Live broadcast time: August 1 (Thursday) 19:00. Registration link: https://www.wjx.top/vm/YLz6DY6.aspx?udsid=146765
  • [2024-06-27] 💥 PaddleX 3.0, the low-code development tool for PaddlePaddle, has been significantly updated!
    • Rich model production lines: 68 high-quality PaddlePaddle models carefully selected, covering task scenarios such as image classification, object detection, image segmentation, OCR, text image layout analysis, and time series analysis;
    • Low-code development paradigm: Supports full-process low-code development for single models and model production lines, provides Python API, and supports user-defined model chaining;
    • Multi-hardware training and inference support: Supports model training and inference on various hardware including NVIDIA GPUs, Kunlun chips, Ascend, and Cambricon. For PaddleTS supported models, see [Model List](https://github.com/PaddlePaddle/PaddleTS/blob/release_v1.1/docs/hardware/supported_models.md
  • Added time series classification capability
  • Newly released 6 deep time series models. USAD (UnSupervised Anomaly Detection) and MTAD_GAT (Multivariate Time-series Anomaly Detection via Graph Attention Network) anomaly detection models, CNN and Inception Time time series classification models, SCINet (Sample Convolution and Interaction Network) and TFT (Temporal Fusion Transformer) time series prediction models
  • Newly released Paddle Inference support, adapted for time series prediction and time series anomaly detection
  • Added model interpretability capabilities. Including model-agnostic and model-specific interpretability
  • Added support for representation-based clustering and classification

You can also refer to the Release Notes for a more detailed list of updates.

In the future, more advanced features will be further released, including but not limited to:

  • More time series models
  • Scenario-based Pipeline, supporting end-to-end real scenario solutions

About PaddleTS

Specifically, the PaddleTS time series library includes the following sub-modules:

模块简述
paddlets.datasets时序数据模块,统一的时序数据结构和预定义的数据处理方法
paddlets.autots自动超参寻优
paddlets.transform数据转换模块,提供数据预处理和特征工程相关能力
paddlets.models.forecasting时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序预测模型
paddlets.models.representation时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序表征模型
paddlets.models.anomaly时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序异常检测模型
paddlets.models.classify时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序分类模型
paddlets.pipeline建模任务流模块,支持特征工程、模型训练、模型评估的任务流实现
paddlets.metrics效果评估模块,提供多维度模型评估能力
paddlets.analysis数据分析模块,提供高效的时序特色数据分析能力
paddlets.ensemble时序集成学习模块,基于模型集成提供时序预测能力
paddlets.xai时序模型可解释性模块
paddlets.utils工具集模块,提供回测等基础功能

安装

前置条件

  • python >= 3.7
  • paddlepaddle >= 2.3

使用pip安装paddlets的命令如下:

pip install paddlets

更多安装方式请参考:环境安装

文档

社区

欢迎通过扫描下面的微信二维码加入PaddleTS开源社区,与PaddleTS维护者及社区成员随时进行技术讨论:

<p align="center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/5355768a-3081-4cab-a4f5-c5e180dc4642.jpg" align="middle" height=300 width=300> </p>

代码发布与贡献

我们非常感谢每一位代码贡献者。如果您发现任何Bug,请随时通过提交issue的方式告知我们。

如果您计划贡献涉及新功能、工具类函数、或者扩展PaddleTS的核心组件相关的代码,请您在提交代码之前先提交issue,并针对此次提交的功能与我们进行讨论。

如果在没有讨论的情况下直接发起的PR请求,可能会导致此次PR请求被拒绝。原因是对于您提交的PR涉及的模块,我们也许希望该模块朝着另一个不同的方向发展。

许可证

PaddleTS 使用Apache风格的许可证,可参考 LICENSE 文件。

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多