PaddleTS

PaddleTS

基于飞桨的开源时序分析库 提供全面深度学习模型

PaddleTS是基于飞桨框架的时序建模库,专注深度学习模型。它提供统一数据结构和基础功能封装,内置多种先进模型和数据转换工具。支持自动调优、第三方集成、GPU加速和集成学习。涵盖预测、表征、异常检测等任务,为时序分析提供全面解决方案。

PaddleTS时序建模深度学习PaddlePaddlePython库Github开源项目

English | [简体中文](https://github.com/PaddlePaddle/PaddleTS/blob/release_v1.1/./README_en.md

<p align="center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/c091e707-cbbc-4be8-877c-fa421fa26a07.png" align="middle" width="500"> <p>
<p align="center"> <a href="https://github.com/PaddlePaddle/PaddleTS/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleTS?color=9ea"></a> <a href=""><img src="https://yellow-cdn.veclightyear.com/0a4dffa0/49473528-7965-4922-930b-802509ca3abd.svg"></a> <a href=""><img src="https://yellow-cdn.veclightyear.com/0a4dffa0/fcc56409-e386-46ee-9c51-2ea38494a965.svg"></a> <a href="https://github.com/PaddlePaddle/PaddleTS/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleTS?color=3af"></a> <a href="https://github.com/PaddlePaddle/PaddleTS/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleTS?color=9cc"></a> </p>

PaddleTS is a user-friendly Python library for deep time series modeling based on the PaddlePaddle deep learning framework. It focuses on industry-leading deep models, aiming to provide domain experts and industry users with scalable time series modeling capabilities and a convenient user experience. The main features of PaddleTS include:

  • Designing a unified data structure to express diverse time series data, supporting single-target and multi-target variables, and multiple types of covariates
  • Encapsulating basic model functionalities such as data loading, callback settings, loss functions, training process control, and other common methods, helping developers focus on network structure itself during new model development
  • Built-in industry-leading deep learning models, including time series prediction models like NBEATS, NHiTS, LSTNet, TCN, Transformer, DeepAR, Informer, time series representation models like TS2Vec and CoST, as well as time series anomaly detection models like Autoencoder, VAE, and AnomalyTransformer
  • Built-in diverse data transformation operators, supporting data processing and transformation, including missing value imputation, anomaly handling, normalization, and time-related covariate extraction
  • Built-in classic data analysis operators, helping developers easily implement data exploration, including data statistical information and data summary functions
  • AutoTS for automatic model tuning, supporting multiple types of HPO (Hyper Parameter Optimization) algorithms, showing significant tuning effects on multiple models and datasets
  • Automatic integration of third-party machine learning models and data transformation modules, supporting time series applications from libraries such as sklearn and pyod
  • Support for running PaddlePaddle-based time series models on GPU devices
  • Time series model ensemble learning capability

📣 Recent Updates

  • 📚 "High-Precision Time Series Analysis Starriver Zero-Code Production Line Now Available", bringing together 3 major time series analysis scenario tasks, covering 11 cutting-edge time series models. High-precision multi-model fusion time series featured production line, automatically searching for the optimal model combination adaptive to different scenarios, improving time series prediction accuracy by about 20% and time series anomaly detection accuracy by 5% in real industrial application scenarios. Supports cloud-based and local service deployment and pure offline use. Live broadcast time: August 1 (Thursday) 19:00. Registration link: https://www.wjx.top/vm/YLz6DY6.aspx?udsid=146765
  • [2024-06-27] 💥 PaddleX 3.0, the low-code development tool for PaddlePaddle, has been significantly updated!
    • Rich model production lines: 68 high-quality PaddlePaddle models carefully selected, covering task scenarios such as image classification, object detection, image segmentation, OCR, text image layout analysis, and time series analysis;
    • Low-code development paradigm: Supports full-process low-code development for single models and model production lines, provides Python API, and supports user-defined model chaining;
    • Multi-hardware training and inference support: Supports model training and inference on various hardware including NVIDIA GPUs, Kunlun chips, Ascend, and Cambricon. For PaddleTS supported models, see [Model List](https://github.com/PaddlePaddle/PaddleTS/blob/release_v1.1/docs/hardware/supported_models.md
  • Added time series classification capability
  • Newly released 6 deep time series models. USAD (UnSupervised Anomaly Detection) and MTAD_GAT (Multivariate Time-series Anomaly Detection via Graph Attention Network) anomaly detection models, CNN and Inception Time time series classification models, SCINet (Sample Convolution and Interaction Network) and TFT (Temporal Fusion Transformer) time series prediction models
  • Newly released Paddle Inference support, adapted for time series prediction and time series anomaly detection
  • Added model interpretability capabilities. Including model-agnostic and model-specific interpretability
  • Added support for representation-based clustering and classification

You can also refer to the Release Notes for a more detailed list of updates.

In the future, more advanced features will be further released, including but not limited to:

  • More time series models
  • Scenario-based Pipeline, supporting end-to-end real scenario solutions

About PaddleTS

Specifically, the PaddleTS time series library includes the following sub-modules:

模块简述
paddlets.datasets时序数据模块,统一的时序数据结构和预定义的数据处理方法
paddlets.autots自动超参寻优
paddlets.transform数据转换模块,提供数据预处理和特征工程相关能力
paddlets.models.forecasting时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序预测模型
paddlets.models.representation时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序表征模型
paddlets.models.anomaly时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序异常检测模型
paddlets.models.classify时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序分类模型
paddlets.pipeline建模任务流模块,支持特征工程、模型训练、模型评估的任务流实现
paddlets.metrics效果评估模块,提供多维度模型评估能力
paddlets.analysis数据分析模块,提供高效的时序特色数据分析能力
paddlets.ensemble时序集成学习模块,基于模型集成提供时序预测能力
paddlets.xai时序模型可解释性模块
paddlets.utils工具集模块,提供回测等基础功能

安装

前置条件

  • python >= 3.7
  • paddlepaddle >= 2.3

使用pip安装paddlets的命令如下:

pip install paddlets

更多安装方式请参考:环境安装

文档

社区

欢迎通过扫描下面的微信二维码加入PaddleTS开源社区,与PaddleTS维护者及社区成员随时进行技术讨论:

<p align="center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/5355768a-3081-4cab-a4f5-c5e180dc4642.jpg" align="middle" height=300 width=300> </p>

代码发布与贡献

我们非常感谢每一位代码贡献者。如果您发现任何Bug,请随时通过提交issue的方式告知我们。

如果您计划贡献涉及新功能、工具类函数、或者扩展PaddleTS的核心组件相关的代码,请您在提交代码之前先提交issue,并针对此次提交的功能与我们进行讨论。

如果在没有讨论的情况下直接发起的PR请求,可能会导致此次PR请求被拒绝。原因是对于您提交的PR涉及的模块,我们也许希望该模块朝着另一个不同的方向发展。

许可证

PaddleTS 使用Apache风格的许可证,可参考 LICENSE 文件。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多