Awesome-Controllable-T2I-Diffusion-Models

Awesome-Controllable-T2I-Diffusion-Models

可控文本到图像扩散模型研究进展综述

该项目汇集了文本到图像扩散模型中可控生成的前沿研究。内容涵盖个性化生成、空间控制、高级文本条件生成等多个方向,并总结了多条件生成和通用可控生成方法。项目为研究人员和开发者提供了全面了解可控T2I扩散模型最新进展的资源,有助于促进该领域的发展。

Diffusion Models文本到图像生成个性化生成主体驱动生成可控生成Github开源项目
<!-- # <p align=center>`awesome gan-inversion`</p> -->

Awesome Maintenance PR's Welcome Survey Paper

<br /> <p align="center"> <h1 align="center">Awesome Controllable T2I Diffusion Models</h1> </p> <br />

We are focusing on how to Control text-to-image diffusion models with Novel Conditions.

For more detailed information, please refer to our survey paper: Controllable Generation with Text-to-Image Diffusion Models: A Survey

<p align="center"> <img src="assets/count.png" alt="img" width="49%" /> <img src="assets/controllable_generation.png" alt="img" width="49%" /> </p>

💖 Citation

If you find value in our survey paper or curated collection, please consider citing our work and starring our repo to support us.

@article{cao2024controllable, title={Controllable Generation with Text-to-Image Diffusion Models: A Survey}, author={Pu Cao and Feng Zhou and Qing Song and Lu Yang}, journal={arXiv preprint arXiv:2403.04279}, year={2024} }

🎁 How to contribute to this repository?

Since the following content is generated based on our database, please provide the following information in the issue to help us fill in the database to add new papers (please do not submit a PR directly).

1. Paper title 2. arXiv ID (if any) 3. Publication status (if any)

🌈 Contents

<!-- start -->

🚀Generation with Specific Condition

🍇Personalization

🍉Subject-Driven Generation

PartCraft: Crafting Creative Objects by Parts.<br> Kam Woh Ng, Xiatian Zhu, Yi-Zhe Song, Tao Xiang.<br> ECCV 2024. [PDF]

ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance.<br> Jiannan Huang, Jun Hao Liew, Hanshu Yan, Yuyang Yin, Yao Zhao, Yunchao Wei.<br> arXiv 2024. [PDF]

Personalized Residuals for Concept-Driven Text-to-Image Generation.<br> Cusuh Ham, Matthew Fisher, James Hays, Nicholas Kolkin, Yuchen Liu, Richard Zhang, Tobias Hinz.<br> arXiv 2024. [PDF]

Improving Subject-Driven Image Synthesis with Subject-Agnostic Guidance.<br> Kelvin C. K. Chan, Yang Zhao, Xuhui Jia, Ming-Hsuan Yang, Huisheng Wang.<br> arXiv 2024. [PDF]

MMTryon: Multi-Modal Multi-Reference Control for High-Quality Fashion Generation.<br> Xujie Zhang, Ente Lin, Xiu Li, Yuxuan Luo, Michael Kampffmeyer, Xin Dong, Xiaodan Liang.<br> arXiv 2024. [PDF]

Infusion: Preventing Customized Text-to-Image Diffusion from Overfitting.<br> Weili Zeng, Yichao Yan, Qi Zhu, Zhuo Chen, Pengzhi Chu, Weiming Zhao, Xiaokang Yang.<br> arXiv 2024. [PDF]

CAT: Contrastive Adapter Training for Personalized Image Generation.<br> Jae Wan Park, Sang Hyun Park, Jun Young Koh, Junha Lee, Min Song.<br> arXiv 2024. [PDF]

MoMA: Multimodal LLM Adapter for Fast Personalized Image Generation.<br> Kunpeng Song, Yizhe Zhu, Bingchen Liu, Qing Yan, Ahmed Elgammal, Xiao Yang.<br> arXiv 2024. [PDF]

U-VAP: User-specified Visual Appearance Personalization via Decoupled Self Augmentation.<br> You Wu, Kean Liu, Xiaoyue Mi, Fan Tang, Juan Cao, Jintao Li.<br> arXiv 2024. [PDF]

Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation.<br> Yutong He, Alexander Robey, Naoki Murata, Yiding Jiang, Joshua Williams, George J. Pappas, Hamed Hassani, Yuki Mitsufuji, Ruslan Salakhutdinov, J. Zico Kolter.<br> arXiv 2024. [PDF]

Attention Calibration for Disentangled Text-to-Image Personalization.<br> Yanbing Zhang, Mengping Yang, Qin Zhou, Zhe Wang.<br> arXiv 2024. [PDF]

Selectively Informative Description can Reduce Undesired Embedding Entanglements in Text-to-Image Personalization.<br> Jimyeong Kim, Jungwon Park, Wonjong Rhee.<br> arXiv 2024. [PDF]

MM-Diff: High-Fidelity Image Personalization via Multi-Modal Condition Integration.<br> Zhichao Wei, Qingkun Su, Long Qin, Weizhi Wang.<br> arXiv 2024. [PDF]

Generative Active Learning for Image Synthesis Personalization.<br> Xulu Zhang, Wengyu Zhang, Xiao-Yong Wei, Jinlin Wu, Zhaoxiang Zhang, Zhen Lei, Qing Li.<br> arXiv 2024. [PDF]

Harmonizing Visual and Textual Embeddings for Zero-Shot Text-to-Image Customization.<br> Yeji Song, Jimyeong Kim, Wonhark Park, Wonsik Shin, Wonjong Rhee, Nojun Kwak.<br> arXiv 2024. [PDF]

Tuning-Free Image Customization with Image and Text Guidance.<br> Pengzhi Li, Qiang Nie, Ying Chen, Xi Jiang, Kai Wu, Yuhuan Lin, Yong Liu, Jinlong Peng, Chengjie Wang, Feng Zheng.<br> arXiv 2024. [PDF]

Fast Personalized Text-to-Image Syntheses With Attention Injection.<br> Yuxuan Zhang, Yiren Song, Jinpeng Yu, Han Pan, Zhongliang Jing.<br> arXiv 2024. [PDF]

OMG: Occlusion-friendly Personalized Multi-concept Generation in Diffusion Models.<br> Zhe Kong, Yong Zhang, Tianyu Yang, Tao Wang, Kaihao Zhang, Bizhu Wu, Guanying Chen, Wei Liu, Wenhan Luo.<br> arXiv 2024. [PDF]

StableGarment: Garment-Centric Generation via Stable Diffusion.<br> Rui Wang, Hailong Guo, Jiaming Liu, Huaxia Li, Haibo Zhao, Xu Tang, Yao Hu, Hao Tang, Peipei Li.<br> arXiv 2024. [PDF]

Block-wise LoRA: Revisiting Fine-grained LoRA for Effective Personalization and Stylization in Text-to-Image Generation.<br> Likun Li, Haoqi Zeng, Changpeng Yang, Haozhe Jia, Di Xu.<br> arXiv 2024. [PDF]

FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation.<br> Pengchong Qiao, Lei Shang, Chang Liu, Baigui Sun, Xiangyang Ji, Jie Chen.<br> arXiv 2024. [PDF]

RealCustom: Narrowing Real Text Word for Real-Time Open-Domain Text-to-Image Customization.<br> Mengqi Huang, Zhendong Mao, Mingcong Liu, Qian He, Yongdong Zhang.<br> arXiv 2024. [PDF]

DiffuseKronA: A Parameter Efficient Fine-tuning Method for Personalized Diffusion Models.<br> Shyam Marjit, Harshit Singh, Nityanand Mathur, Sayak Paul, Chia-Mu Yu, Pin-Yu Chen.<br> arXiv 2024. [PDF]

Direct Consistency Optimization for Compositional Text-to-Image Personalization.<br> Kyungmin Lee, Sangkyung Kwak, Kihyuk Sohn, Jinwoo Shin.<br> arXiv 2024. [PDF]

ComFusion: Personalized Subject Generation in Multiple Specific Scenes From Single Image.<br> Yan Hong, Jianfu Zhang.<br> arXiv 2024. [PDF]

Visual Concept-driven Image Generation with Text-to-Image Diffusion Model.<br> Tanzila Rahman, Shweta Mahajan, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov, Leonid Sigal.<br> arXiv 2024. [PDF]

Textual Localization: Decomposing Multi-concept Images for Subject-Driven Text-to-Image Generation.<br> Junjie Shentu, Matthew Watson, Noura Al Moubayed.<br> arXiv 2024. [PDF]

DreamMatcher: Appearance Matching Self-Attention for Semantically-Consistent Text-to-Image Personalization.<br> Jisu Nam, Heesu Kim, DongJae Lee, Siyoon Jin, Seungryong Kim, Seunggyu Chang.<br> CVPR 2024. [PDF]

SeFi-IDE: Semantic-Fidelity Identity Embedding for Personalized Diffusion-Based Generation.<br> Yang Li, Songlin Yang, Wei Wang, Jing Dong.<br> arXiv 2024. [PDF]

Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image Personalization.<br> Henglei Lv, Jiayu Xiao, Liang Li, Qingming Huang.<br> arXiv 2024. [PDF]

Object-Driven One-Shot Fine-tuning of Text-to-Image Diffusion with Prototypical Embedding.<br> Jianxiang Lu, Cong Xie, Hui Guo.<br> arXiv 2024. [PDF]

BootPIG: Bootstrapping Zero-shot Personalized Image Generation Capabilities in Pretrained Diffusion Models.<br> Senthil Purushwalkam, Akash Gokul, Shafiq Joty, Nikhil Naik.<br> arXiv 2024. [PDF]

PALP: Prompt Aligned Personalization of Text-to-Image Models.<br> Moab Arar, Andrey Voynov, Amir Hertz, Omri Avrahami, Shlomi Fruchter, Yael Pritch, Daniel Cohen-Or, Ariel Shamir.<br> arXiv 2024. [PDF]

Cross Initialization for Personalized Text-to-Image Generation.<br> Lianyu Pang, Jian Yin, Haoran Xie, Qiping Wang, Qing Li, Xudong Mao.<br> CVPR 2024. [PDF]

DreamTuner: Single Image is Enough for Subject-Driven Generation.<br> Miao Hua, Jiawei Liu, Fei Ding, Wei Liu, Jie Wu, Qian He.<br> arXiv 2023. [PDF]

Decoupled Textual Embeddings for Customized Image Generation.<br> Yufei Cai, Yuxiang Wei, Zhilong Ji, Jinfeng Bai, Hu Han, Wangmeng Zuo.<br> arXiv 2023. [PDF]

Compositional Inversion for Stable Diffusion Models.<br> Xulu Zhang, Xiao-Yong Wei, Jinlin Wu, Tianyi Zhang, Zhaoxiang Zhang, Zhen Lei, Qing Li.<br> AAAI 2024. [PDF]

Customization Assistant for Text-to-image Generation.<br> Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu, Tong Sun.<br> CVPR 2024. [PDF]

VideoBooth: Diffusion-based Video Generation with Image Prompts.<br> Yuming Jiang, Tianxing Wu, Shuai Yang, Chenyang Si, Dahua Lin, Yu Qiao, Chen Change Loy, Ziwei Liu.<br> arXiv 2023. [PDF]

HiFi Tuner: High-Fidelity Subject-Driven Fine-Tuning for Diffusion Models.<br> Zhonghao Wang, Wei Wei, Yang Zhao, Zhisheng Xiao, Mark Hasegawa-Johnson, Humphrey Shi, Tingbo Hou.<br> arXiv 2023. [PDF]

VideoAssembler: Identity-Consistent Video Generation with Reference Entities using Diffusion Model.<br> Haoyu Zhao, Tianyi Lu, Jiaxi Gu, Xing Zhang, Zuxuan Wu, Hang Xu, Yu-Gang Jiang.<br> arXiv 2023.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多