Awesome-Controllable-T2I-Diffusion-Models

Awesome-Controllable-T2I-Diffusion-Models

可控文本到图像扩散模型研究进展综述

该项目汇集了文本到图像扩散模型中可控生成的前沿研究。内容涵盖个性化生成、空间控制、高级文本条件生成等多个方向,并总结了多条件生成和通用可控生成方法。项目为研究人员和开发者提供了全面了解可控T2I扩散模型最新进展的资源,有助于促进该领域的发展。

Diffusion Models文本到图像生成个性化生成主体驱动生成可控生成Github开源项目
<!-- # <p align=center>`awesome gan-inversion`</p> -->

Awesome Maintenance PR's Welcome Survey Paper

<br /> <p align="center"> <h1 align="center">Awesome Controllable T2I Diffusion Models</h1> </p> <br />

We are focusing on how to Control text-to-image diffusion models with Novel Conditions.

For more detailed information, please refer to our survey paper: Controllable Generation with Text-to-Image Diffusion Models: A Survey

<p align="center"> <img src="assets/count.png" alt="img" width="49%" /> <img src="assets/controllable_generation.png" alt="img" width="49%" /> </p>

💖 Citation

If you find value in our survey paper or curated collection, please consider citing our work and starring our repo to support us.

@article{cao2024controllable, title={Controllable Generation with Text-to-Image Diffusion Models: A Survey}, author={Pu Cao and Feng Zhou and Qing Song and Lu Yang}, journal={arXiv preprint arXiv:2403.04279}, year={2024} }

🎁 How to contribute to this repository?

Since the following content is generated based on our database, please provide the following information in the issue to help us fill in the database to add new papers (please do not submit a PR directly).

1. Paper title 2. arXiv ID (if any) 3. Publication status (if any)

🌈 Contents

<!-- start -->

🚀Generation with Specific Condition

🍇Personalization

🍉Subject-Driven Generation

PartCraft: Crafting Creative Objects by Parts.<br> Kam Woh Ng, Xiatian Zhu, Yi-Zhe Song, Tao Xiang.<br> ECCV 2024. [PDF]

ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance.<br> Jiannan Huang, Jun Hao Liew, Hanshu Yan, Yuyang Yin, Yao Zhao, Yunchao Wei.<br> arXiv 2024. [PDF]

Personalized Residuals for Concept-Driven Text-to-Image Generation.<br> Cusuh Ham, Matthew Fisher, James Hays, Nicholas Kolkin, Yuchen Liu, Richard Zhang, Tobias Hinz.<br> arXiv 2024. [PDF]

Improving Subject-Driven Image Synthesis with Subject-Agnostic Guidance.<br> Kelvin C. K. Chan, Yang Zhao, Xuhui Jia, Ming-Hsuan Yang, Huisheng Wang.<br> arXiv 2024. [PDF]

MMTryon: Multi-Modal Multi-Reference Control for High-Quality Fashion Generation.<br> Xujie Zhang, Ente Lin, Xiu Li, Yuxuan Luo, Michael Kampffmeyer, Xin Dong, Xiaodan Liang.<br> arXiv 2024. [PDF]

Infusion: Preventing Customized Text-to-Image Diffusion from Overfitting.<br> Weili Zeng, Yichao Yan, Qi Zhu, Zhuo Chen, Pengzhi Chu, Weiming Zhao, Xiaokang Yang.<br> arXiv 2024. [PDF]

CAT: Contrastive Adapter Training for Personalized Image Generation.<br> Jae Wan Park, Sang Hyun Park, Jun Young Koh, Junha Lee, Min Song.<br> arXiv 2024. [PDF]

MoMA: Multimodal LLM Adapter for Fast Personalized Image Generation.<br> Kunpeng Song, Yizhe Zhu, Bingchen Liu, Qing Yan, Ahmed Elgammal, Xiao Yang.<br> arXiv 2024. [PDF]

U-VAP: User-specified Visual Appearance Personalization via Decoupled Self Augmentation.<br> You Wu, Kean Liu, Xiaoyue Mi, Fan Tang, Juan Cao, Jintao Li.<br> arXiv 2024. [PDF]

Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation.<br> Yutong He, Alexander Robey, Naoki Murata, Yiding Jiang, Joshua Williams, George J. Pappas, Hamed Hassani, Yuki Mitsufuji, Ruslan Salakhutdinov, J. Zico Kolter.<br> arXiv 2024. [PDF]

Attention Calibration for Disentangled Text-to-Image Personalization.<br> Yanbing Zhang, Mengping Yang, Qin Zhou, Zhe Wang.<br> arXiv 2024. [PDF]

Selectively Informative Description can Reduce Undesired Embedding Entanglements in Text-to-Image Personalization.<br> Jimyeong Kim, Jungwon Park, Wonjong Rhee.<br> arXiv 2024. [PDF]

MM-Diff: High-Fidelity Image Personalization via Multi-Modal Condition Integration.<br> Zhichao Wei, Qingkun Su, Long Qin, Weizhi Wang.<br> arXiv 2024. [PDF]

Generative Active Learning for Image Synthesis Personalization.<br> Xulu Zhang, Wengyu Zhang, Xiao-Yong Wei, Jinlin Wu, Zhaoxiang Zhang, Zhen Lei, Qing Li.<br> arXiv 2024. [PDF]

Harmonizing Visual and Textual Embeddings for Zero-Shot Text-to-Image Customization.<br> Yeji Song, Jimyeong Kim, Wonhark Park, Wonsik Shin, Wonjong Rhee, Nojun Kwak.<br> arXiv 2024. [PDF]

Tuning-Free Image Customization with Image and Text Guidance.<br> Pengzhi Li, Qiang Nie, Ying Chen, Xi Jiang, Kai Wu, Yuhuan Lin, Yong Liu, Jinlong Peng, Chengjie Wang, Feng Zheng.<br> arXiv 2024. [PDF]

Fast Personalized Text-to-Image Syntheses With Attention Injection.<br> Yuxuan Zhang, Yiren Song, Jinpeng Yu, Han Pan, Zhongliang Jing.<br> arXiv 2024. [PDF]

OMG: Occlusion-friendly Personalized Multi-concept Generation in Diffusion Models.<br> Zhe Kong, Yong Zhang, Tianyu Yang, Tao Wang, Kaihao Zhang, Bizhu Wu, Guanying Chen, Wei Liu, Wenhan Luo.<br> arXiv 2024. [PDF]

StableGarment: Garment-Centric Generation via Stable Diffusion.<br> Rui Wang, Hailong Guo, Jiaming Liu, Huaxia Li, Haibo Zhao, Xu Tang, Yao Hu, Hao Tang, Peipei Li.<br> arXiv 2024. [PDF]

Block-wise LoRA: Revisiting Fine-grained LoRA for Effective Personalization and Stylization in Text-to-Image Generation.<br> Likun Li, Haoqi Zeng, Changpeng Yang, Haozhe Jia, Di Xu.<br> arXiv 2024. [PDF]

FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation.<br> Pengchong Qiao, Lei Shang, Chang Liu, Baigui Sun, Xiangyang Ji, Jie Chen.<br> arXiv 2024. [PDF]

RealCustom: Narrowing Real Text Word for Real-Time Open-Domain Text-to-Image Customization.<br> Mengqi Huang, Zhendong Mao, Mingcong Liu, Qian He, Yongdong Zhang.<br> arXiv 2024. [PDF]

DiffuseKronA: A Parameter Efficient Fine-tuning Method for Personalized Diffusion Models.<br> Shyam Marjit, Harshit Singh, Nityanand Mathur, Sayak Paul, Chia-Mu Yu, Pin-Yu Chen.<br> arXiv 2024. [PDF]

Direct Consistency Optimization for Compositional Text-to-Image Personalization.<br> Kyungmin Lee, Sangkyung Kwak, Kihyuk Sohn, Jinwoo Shin.<br> arXiv 2024. [PDF]

ComFusion: Personalized Subject Generation in Multiple Specific Scenes From Single Image.<br> Yan Hong, Jianfu Zhang.<br> arXiv 2024. [PDF]

Visual Concept-driven Image Generation with Text-to-Image Diffusion Model.<br> Tanzila Rahman, Shweta Mahajan, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov, Leonid Sigal.<br> arXiv 2024. [PDF]

Textual Localization: Decomposing Multi-concept Images for Subject-Driven Text-to-Image Generation.<br> Junjie Shentu, Matthew Watson, Noura Al Moubayed.<br> arXiv 2024. [PDF]

DreamMatcher: Appearance Matching Self-Attention for Semantically-Consistent Text-to-Image Personalization.<br> Jisu Nam, Heesu Kim, DongJae Lee, Siyoon Jin, Seungryong Kim, Seunggyu Chang.<br> CVPR 2024. [PDF]

SeFi-IDE: Semantic-Fidelity Identity Embedding for Personalized Diffusion-Based Generation.<br> Yang Li, Songlin Yang, Wei Wang, Jing Dong.<br> arXiv 2024. [PDF]

Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image Personalization.<br> Henglei Lv, Jiayu Xiao, Liang Li, Qingming Huang.<br> arXiv 2024. [PDF]

Object-Driven One-Shot Fine-tuning of Text-to-Image Diffusion with Prototypical Embedding.<br> Jianxiang Lu, Cong Xie, Hui Guo.<br> arXiv 2024. [PDF]

BootPIG: Bootstrapping Zero-shot Personalized Image Generation Capabilities in Pretrained Diffusion Models.<br> Senthil Purushwalkam, Akash Gokul, Shafiq Joty, Nikhil Naik.<br> arXiv 2024. [PDF]

PALP: Prompt Aligned Personalization of Text-to-Image Models.<br> Moab Arar, Andrey Voynov, Amir Hertz, Omri Avrahami, Shlomi Fruchter, Yael Pritch, Daniel Cohen-Or, Ariel Shamir.<br> arXiv 2024. [PDF]

Cross Initialization for Personalized Text-to-Image Generation.<br> Lianyu Pang, Jian Yin, Haoran Xie, Qiping Wang, Qing Li, Xudong Mao.<br> CVPR 2024. [PDF]

DreamTuner: Single Image is Enough for Subject-Driven Generation.<br> Miao Hua, Jiawei Liu, Fei Ding, Wei Liu, Jie Wu, Qian He.<br> arXiv 2023. [PDF]

Decoupled Textual Embeddings for Customized Image Generation.<br> Yufei Cai, Yuxiang Wei, Zhilong Ji, Jinfeng Bai, Hu Han, Wangmeng Zuo.<br> arXiv 2023. [PDF]

Compositional Inversion for Stable Diffusion Models.<br> Xulu Zhang, Xiao-Yong Wei, Jinlin Wu, Tianyi Zhang, Zhaoxiang Zhang, Zhen Lei, Qing Li.<br> AAAI 2024. [PDF]

Customization Assistant for Text-to-image Generation.<br> Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu, Tong Sun.<br> CVPR 2024. [PDF]

VideoBooth: Diffusion-based Video Generation with Image Prompts.<br> Yuming Jiang, Tianxing Wu, Shuai Yang, Chenyang Si, Dahua Lin, Yu Qiao, Chen Change Loy, Ziwei Liu.<br> arXiv 2023. [PDF]

HiFi Tuner: High-Fidelity Subject-Driven Fine-Tuning for Diffusion Models.<br> Zhonghao Wang, Wei Wei, Yang Zhao, Zhisheng Xiao, Mark Hasegawa-Johnson, Humphrey Shi, Tingbo Hou.<br> arXiv 2023. [PDF]

VideoAssembler: Identity-Consistent Video Generation with Reference Entities using Diffusion Model.<br> Haoyu Zhao, Tianyi Lu, Jiaxi Gu, Xing Zhang, Zuxuan Wu, Hang Xu, Yu-Gang Jiang.<br> arXiv 2023.

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多