openrl

openrl

综合性强化学习平台,支持多任务训练

OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。

OpenRL强化学习PyTorch多智能体自然语言处理Github开源项目

OpenRL 项目介绍

项目概况

OpenRL 是一个开源的通用强化学习研究框架,支持多种任务的训练,如单智能体、多智能体、离线强化学习、自对弈以及自然语言处理等。这个框架基于 PyTorch 开发,旨在为强化学习研究社区提供一个简单易用、灵活、高效和可持续的平台。

OpenRL 的特性

OpenRL 支持多种强化学习特性,具体包括:

  • 简单通用的接口:支持所有任务和环境的训练。
  • 多智能体任务支持:涵盖单智能体及多智能体的训练。
  • 离线强化学习的支持:可使用专家数据集进行训练。
  • 自对弈训练:通过自我对弈进行学习和改进。
  • 自然语言任务的强化学习:例如对话任务。
  • 支持 DeepSpeed,加速深度学习训练。
  • 支持 Arena 用于在竞争环境中进行智能体评估。
  • 可引入 Hugging Face 的模型和数据集进行训练和测试。
  • 指导教程:如何将用户自定义环境整合到 OpenRL 中。
  • 支持多种模型,如 LSTM、GRU、Transformer 等。
  • 具备多种训练加速方法,包括自动混合精度训练及数据采集中使用半精度策略网络。
  • 支持用户自定义的训练模型、奖励模型、训练数据和环境。
  • 兼容 gymnasium 环境。
  • 支持多种回调机制,实现日志记录、保存、早停等功能。
  • 支持字典类观察空间。
  • 支持 wandbtensorboardX 等可视化工具。
  • 提供串行和并行环境训练,保证两种模式下的一致性。
  • 中文和英文文档支持。
  • 提供单元测试和代码覆盖率测试。
  • 遵循 Black 代码风格准则和类型检查。

支持的算法

OpenRL 支持多种强化学习算法,包括但不限于:

  • 近端策略优化 (PPO)
  • 双重剪辑 PPO
  • 多智能体 PPO (MAPPO)
  • 联合比率政策优化 (JRPO)
  • 生成对抗模仿学习 (GAIL)
  • 行为克隆 (BC)
  • 优势演员-评论家(A2C)
  • 深度Q网络(DQN)
  • 多智能体 Transformer (MAT)
  • 价值分解网络 (VDN)
  • 软演员评论家 (SAC)
  • 深度确定性策略梯度(DDPG)

支持的环境

OpenRL 支持多种环境,如 Gymnasium、MuJoCo、PettingZoo、MPE、Atari、StarCraft II、Omniverse Isaac Gym 等。

为什么选择 OpenRL?

OpenRL 采用模块化设计和高级抽象,使用户可以通过统一且用户友好的界面完成各种任务的训练,与其他流行的强化学习库相比,OpenRL 提供了更广泛的功能支持,例如多智能体、自对弈训练、离线强化学习等。

安装指南

用户可以通过以下方式安装 OpenRL:

  • 使用 pip 安装:

    pip install openrl
  • 使用 conda 安装:

    conda install -c openrl openrl
  • 从源码安装:

    git clone https://github.com/OpenRL-Lab/openrl.git && cd openrl pip install -e .
  • 使用 Docker 安装: OpenRL 提供了带有和不带 GPU 支持的 Docker 镜像。

快速开始

对于新手,OpenRL 提供了简单易用的接口。以下是使用 PPO 算法在 CartPole 环境中训练的示例:

from openrl.envs.common import make from openrl.modules.common import PPONet as Net from openrl.runners.common import PPOAgent as Agent env = make("CartPole-v1", env_num=9) net = Net(env) agent = Agent(net) agent.train(total_time_steps=20000)

只需以下四步就可完成训练:创建环境、初始化模型、初始化智能体、开始训练。

贡献和反馈

OpenRL 框架仍在持续开发中,欢迎大家加入我们,共同改善这个项目。您可以通过 GitHub Issues 提出问题或功能请求,也可以通过邮件或社交平台与我们讨论。

许可证

OpenRL 在 Apache 2.0 许可下发布。

对于进一步的详情和使用说明,请参阅 OpenRL 文档

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多