DCNv4

DCNv4

为视觉应用设计的高效算子,通过优化空间聚合和内存访问

DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。

DCNv4可变形卷积计算机视觉深度学习神经网络Github开源项目

DCNv4

新闻

  • 2024年1月15日: 🚀 与InternImage相比,采用DCNv4的新型FlashInternImage具有更快的推理速度、更快的收敛速度和更好的性能!!!
  • 2024年1月15日: 🚀 "DCNv4"发布了!

简介

我们推出了可变形卷积v4(DCNv4),这是一种高效且有效的算子,专为广泛的视觉应用而设计。DCNv4通过两个关键改进解决了其前身DCNv3的局限性:1. 移除空间聚合中的softmax归一化,以增强其动态特性和表达能力;2. 优化内存访问以最小化冗余操作,从而提高速度。这些改进使得DCNv4相比DCNv3具有显著更快的收敛速度,处理速度也大幅提升,DCNv4的前向速度提高了三倍以上。

DCNv4在各种任务中表现出色,包括图像分类、实例和语义分割,尤其是图像生成。当集成到潜在扩散模型中的U-Net等生成模型时,DCNv4优于其基准模型,突显了其增强生成模型的可能性。

在实际应用中,将InternImage模型中的DCNv3替换为DCNv4以创建FlashInternImage,在不做进一步修改的情况下,速度提升最高可达80%,并进一步提高了性能。

DCNv4在速度和效率方面的进步,加上其在各种视觉任务中的强大表现,展示了其作为未来视觉模型基础构建块的潜力。

已发布模型

<details> <summary> ImageNet图像分类 </summary> <br> <div>
名称预训练分辨率acc@1参数量下载
FlashInternImage-TImageNet-1K224x22483.630Mckpt | cfg
FlashInternImage-SImageNet-1K224x22484.450Mckpt | cfg
FlashInternImage-BImageNet-1K224x22484.997Mckpt | cfg
FlashInternImage-LImageNet-22K384x38488.1223Mckpt | cfg
</div> </details> <details> <summary> COCO目标检测和实例分割 </summary> <br> <div>
骨干网络方法训练策略边界框mAP掩码mAP配置下载
FlashInternImage-TMask-RCNN1x48.043.1configckpt | log
FlashInternImage-TMask-RCNN3x49.544.0configckpt | log
FlashInternImage-SMask-RCNN1x49.244.0configckpt | log
FlashInternImage-SMask-RCNN3x50.544.9configckpt | log
FlashInternImage-BMask-RCNN1x50.144.5configckpt | log
FlashInternImage-BMask-RCNN3x50.645.4configckpt | log
主干网络方法训练计划边界框mAP掩码mAP配置下载
:------------::---------::---------::-----::------::---::---:
FlashInternImage-LCascade Mask R-CNN1x55.648.2配置模型 | 日志
FlashInternImage-LCascade Mask R-CNN3x56.748.9配置模型
主干网络方法学习率类型预训练训练计划边界框mAP配置下载
FlashInternImage-TDINO分层学习率ImageNet-1K1x54.7配置模型 | 日志
FlashInternImage-SDINO分层学习率ImageNet-1K1x55.3配置模型 | 日志
FlashInternImage-BDINO分层学习率ImageNet-1K1x56.0配置模型 | 日志
FlashInternImage-LDINO0.1倍主干网络学习率ImageNet-22K1x58.8配置模型 | 日志
</div> </details> <details> <summary> ADE20K语义分割 </summary> <br> <div>
主干网络方法分辨率mIoU (单尺度/多尺度)配置下载
FlashInternImage-TUperNet512x51249.3 / 50.3配置模型 | 日志
FlashInternImage-SUperNet512x51250.6 / 51.6配置模型 | 日志
FlashInternImage-BUperNet512x51252.0 / 52.6配置模型 | 日志
FlashInternImage-LUperNet640x64055.6 / 56.0配置模型 | 日志
主干网络方法分辨率mIoU (单尺度)配置下载
:--------------::----------::----------::-----------::-----------::----------:
FlashInternImage-TMask2Former512x51251.2配置文件模型权重 | 日志
FlashInternImage-SMask2Former640x64052.6配置文件模型权重 | 日志
FlashInternImage-BMask2Former640x64053.4配置文件模型权重 | 日志
FlashInternImage-LMask2Former640x64056.7配置文件模型权重 | 日志
</div> </details>

引用

如果本工作对您的研究有帮助,请考虑引用以下BibTeX条目。

@article{xiong2024efficient, title={高效可变形卷积网络:重新思考视觉应用中的动态和稀疏算子}, author={熊宇文 and 李志琦 and 陈云涛 and 王峰 and 朱熙洲 and 罗佳鹏 and 王文海 and 陆通 and 李鸿升 and 乔宇 and 路乐为 and 周杰 and 戴继峰}, journal={arXiv预印本 arXiv:2401.06197}, year={2024} } @article{wang2022internimage, title={InternImage: 探索具有可变形卷积的大规模视觉基础模型}, author={王文海 and 戴继峰 and 陈哲 and 黄振航 and 李志琦 and 朱熙洲 and 胡晓伟 and 陆通 and 路乐为 and 李鸿升 and 其他}, journal={arXiv预印本 arXiv:2211.05778}, year={2022} } @inproceedings{zhu2022uni, title={Uni-perceiver: 预训练统一架构用于零样本和少样本任务的通用感知}, author={朱熙洲 and 朱静国 and 李浩 and 吴晓石 and 李鸿升 and 王晓华 and 戴继峰}, booktitle={CVPR}, pages={16804--16815}, year={2022} } @article{zhu2022uni, title={Uni-perceiver-moe: 利用条件专家混合学习稀疏通用模型}, author={朱静国 and 朱熙洲 and 王文海 and 王晓华 and 李鸿升 and 王晓刚 and 戴继峰}, journal={arXiv预印本 arXiv:2206.04674}, year={2022} } @article{li2022uni, title={Uni-Perceiver v2: 用于大规模视觉和视觉语言任务的通用模型}, author={李浩 and 朱静国 and 姜晓虎 and 朱熙洲 and 李鸿升 and 袁春 and 王晓华 and 乔宇 and 王晓刚 and 王文海 and 其他}, journal={arXiv预印本 arXiv:2211.09808}, year={2022} } @article{yang2022bevformer, title={BEVFormer v2: 通过透视监督将现代图像骨干网络适配到鸟瞰图识别}, author={杨晨宇 and 陈云涛 and 田浩 and 陶晨鑫 and 朱熙洲 and 张兆翔 and 黄高 and 李宏阳 and 乔宇 and 路乐为 and 其他}, journal={arXiv预印本 arXiv:2211.10439}, year={2022} } @article{su2022towards, title={走向全能预训练:通过最大化多模态互信息}, author={苏伟杰 and 朱熙洲 and 陶晨鑫 and 路乐为 and 李斌 and 黄高 and 乔宇 and 王晓刚 and 周杰 and 戴继峰}, journal={arXiv预印本 arXiv:2211.09807}, year={2022} } @inproceedings{li2022bevformer, title={BEVFormer: 通过时空变换器从多摄像头图像学习鸟瞰图表示}, author={李志琦 and 王文海 and 李宏阳 and 谢恩泽 and 司马重豪 and 陆通 and 乔宇 and 戴继峰}, booktitle={ECCV}, pages={1--18}, year={2022}, }

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多