YoloDotNet is a C# .NET 8 implementation of Yolov8 & Yolov10 for real-time detection of objects in images and videos using ML.NET and ONNX runtime, with GPU acceleration using CUDA.
✓ Classification Categorize an image
✓ Object Detection Detect multiple objects in a single image
✓ OBB Detection OBB (Oriented Bounding Box)
✓ Segmentation Separate detected objects using pixel masks
✓ Pose Estimation Identifying location of specific keypoints in an image
Batteries not included ;)
| Classification | Object Detection | OBB Detection | Segmentation | Pose Estimation |
|---|---|---|---|---|
| <img src="https://user-images.githubusercontent.com/35733515/297393507-c8539bff-0a71-48be-b316-f2611c3836a3.jpg" width=300> | <img src="https://user-images.githubusercontent.com/35733515/273405301-626b3c97-fdc6-47b8-bfaf-c3a7701721da.jpg" width=300> | <img src="https://github.com/NickSwardh/YoloDotNet/assets/35733515/d15c5b3e-18c7-4c2c-9a8d-1d03fb98dd3c" width=300> | <img src="https://github.com/NickSwardh/YoloDotNet/assets/35733515/3ae97613-46f7-46de-8c5d-e9240f1078e6" width=300> | <img src="https://github.com/NickSwardh/YoloDotNet/assets/35733515/b7abeaed-5c00-4462-bd19-c2b77fe86260" width=300> |
| <sub>image from pexels.com</sub> | <sub>image from pexels.com</sub> | <sub>image from pexels.com</sub> | <sub>image from pexels.com</sub> | <sub>image from pexels.com</sub> |
YoloDotNet 2.0 is a Speed Demon release where the main focus has been on supercharging performance to bring you the fastest and most efficient version yet. With major code optimizations, a switch to SkiaSharp for lightning-fast image processing, and added support for Yolov10 as a little extra ;) this release is set to redefine your YoloDotNet experience:
Yolov10 object detection. Because why not have the latest and greatest? ;)Performance Analysis
Processor: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
Ram: 16GB
Graphics: NVIDIA GeForce RTX 3060 12GB
OS: Windows 10
Performance was tested using the Yolov8s models in onnx format and test-images provided in the YoloDotNet project.
| Task | v1.7 Mean (ms) | v2.0 Mean (ms) | Improvement (ms) | Improvement (%) |
|---|---|---|---|---|
| ClassificationCpu | 12.730 | 5.734 | 6.996 | 54.95% |
| ClassificationGpu | 7.708 | 2.255 | 5.453 | 70.73% |
| ObjectDetectionCpu | 147.487 | 113.954 | 33.533 | 22.74% |
| ObjectDetectionGpu | 39.935 | 13.751 | 26.184 | 65.56% |
| SegmentationCpu | 623.313 | 178.411 | 444.902 | 71.37% |
| SegmentationGpu | 477.539 | 37.857 | 439.682 | 92.07% |
| PoseEstimationCpu | 140.823 | 116.557 | 24.266 | 17.23% |
| PoseEstimationGpu | 31.588 | 12.582 | 19.006 | 60.16% |
| ObbDetectionCpu | 401.694 | 346.193 | 55.501 | 13.82% |
| ObbDetectionGpu | 71.935 | 27.591 | 44.344 | 61.62% |
> dotnet add package YoloDotNet
YoloDotNet with GPU-acceleration requires CUDA and cuDNN.
:information_source: Before installing CUDA and cuDNN, make sure to verify the ONNX runtime's current compatibility with specific versions.
Path environment variablesAll models must be Yolov8-models exported to ONNX format. How to export to ONNX format.
using YoloDotNet; // Instantiate a new Yolo object with your ONNX-model using var yolo = new Yolo(@"path\to\model.onnx"); Console.WriteLine(yolo.OnnxModel.ModelType); // Output modeltype...
using YoloDotNet; using YoloDotNet.Enums; using YoloDotNet.Models; using YoloDotNet.Extensions; using SkiaSharp; // Instantiate a new Yolo object using var yolo = new Yolo(new YoloOptions { OnnxModel = @"path\to\model.onnx", // Your Yolov8 or Yolov10 model in onnx format ModelType = ModelType.ObjectDetection, // Model type Cuda = false, // Use CPU or CUDA for GPU accelerated inference. Default = true GpuId = 0 // Select Gpu by id. Default = 0 PrimeGpu = false, // Pre-allocate GPU before first. Default = false }); // Load image using var image = SKImage.FromEncodedData(@"path\to\image.jpg"); // Run inference and get the results var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7); // Draw results using var resultsImage = image.Draw(results); // Save to file resultsImage.Save(@"save\as\new_image.jpg", SKEncodedImageFormat.Jpeg, 80);
[!IMPORTANT] Processing video requires FFmpeg and FFProbe
- Download FFMPEG
- Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
using YoloDotNet; using YoloDotNet.Enums; using YoloDotNet.Models; // Instantiate a new Yolo object using var yolo = new Yolo(new YoloOptions { OnnxModel = @"path\to\model.onnx", // Your Yolov8 or Yolov10 model in onnx format ModelType = ModelType.ObjectDetection, // Model type Cuda = false, // Use CPU or CUDA for GPU accelerated inference. Default = true GpuId = 0 // Select Gpu by id. Default = 0 PrimeGpu = false, // Pre-allocate GPU before first. Default = false }); // Set video options var options = new VideoOptions { VideoFile = @"path\to\video.mp4", OutputDir = @"path\to\output\dir", //GenerateVideo = true, //DrawLabels = true, //FPS = 30, //Width = 640, // Resize video... //Height = -2, // -2 automatically calculate dimensions to keep proportions //Quality = 28, //DrawConfidence = true, //KeepAudio = true, //KeepFrames = false, //DrawSegment = DrawSegment.Default, //PoseOptions = MyPoseMarkerConfiguration // Your own pose marker configuration... }; // Run inference on video var results = yolo.RunObjectDetection(options, 0.25, 0.7); // Do further processing with 'results'...
Example on how to configure Keypoints for a Pose Estimation model
// Pass in a KeyPoint options parameter to the Draw() extension method. Ex: image.Draw(poseEstimationResults, poseOptions);
The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel property.
Example:
using var yolo = new Yolo(@"path\to\model.onnx"); // ONNX metadata and labels resides inside yolo.OnnxModel Console.WriteLine(yolo.OnnxModel);
Example:
// Instantiate a new object using var yolo = new Yolo(@"path\to\model.onnx"); // Display metadata foreach (var property in yolo.OnnxModel.GetType().GetProperties()) { var value = property.GetValue(yolo.OnnxModel); Console.WriteLine($"{property.Name,-20}{value!}"); if (property.Name == nameof(yolo.OnnxModel.CustomMetaData)) foreach (var data in (Dictionary<string, string>)value!) Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}"); } // Get ONNX labels var labels = yolo.OnnxModel.Labels; Console.WriteLine(); Console.WriteLine($"Labels ({labels.Length}):"); Console.WriteLine(new string('-', 58)); // Display for (var i = 0; i < labels.Length; i++) Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}"); // Output: // ModelType ObjectDetection // InputName images // OutputName output0 // CustomMetaData System.Collections.Generic.Dictionary`2[System.String,System.String] // date 2023-11-07T13:33:33.565196 // description Ultralytics YOLOv8n model trained on coco.yaml // author Ultralytics // task detect // license AGPL-3.0 https://ultralytics.com/license // version 8.0.202 // stride 32 // batch 1 // imgsz [640, 640] // names {0: 'person', 1: 'bicycle', 2: 'car' ... } // ImageSize Size [ Width=640, Height=640 ] // Input Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 } // Output ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 } // Labels YoloDotNet.Models.LabelModel[] // // Labels (80): // --------------------------------------------------------- // index: 0 label: person color: #5d8aa8 // index: 1 label: bicycle color: #f0f8ff // index: 2 label: car color: #e32636 // index: 3 label: motorcycle color: #efdecd // ...
https://github.com/ultralytics/ultralytics
https://github.com/sstainba/Yolov8.Net
https://github.com/mentalstack/yolov5-net
There are some benchmarks included in the project. To run them, you simply need to build the project and run the YoloDotNet.Benchmarks project.
The solution must be set to Release mode to run the benchmarks.
There is a if DEBUG section in the benchmark project that will run the benchmarks in Debug mode, but it is not recommended as it will not give accurate results. This is however useful to debug and step through the code. Two examples have been left in place to show how to run the benchmarks in Debug mode, but have been commented out.
Because there is no persistant storage for benchmark results, the results below are in the form of starting point and ending point. If one makes changes to the benchmarks, you would move the ending point to the starting point and run the benchmarks again to see the improvements and those values would be the new ending point.
Benchmark results would be very much based on the hardware used. It is important to try run benchmarks on the same hardware for future comparisons. If different hardware is used, it is important to note the hardware used, as the results would be different, thus the starting point and ending point would need to be updated. Hopefully in future a single hardware configuration can be used for benchmarks, before updating documentation.
Simple benchmarks were modeled around the test project. The test project uses the same images and models as the benchmarks. The benchmarks are run on the same images and models as the test project. These benchmarks provide a good starting point to identify bottlenecks and areas for improvement.
The hardware these benchmarks used are detailed below, the graphics card used was a NVIDIA GeForce RTX 3060 12GB.
* Summary *
BenchmarkDotNet v0.13.12, Windows 10 (10.0.19045.4529/22H2/2022Update)
Intel Core i7-7700K CPU 4.20GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET SDK 8.0.302
[Host] : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
| Method | Mean | Error | StdDev | Gen0 | Gen1 | Gen2 | Allocated |
|---|---|---|---|---|---|---|---|
| ClassificationCpu | 12.730 ms | 0.2525 ms | 0.2593 ms | 1546.8750 | 125.0000 | 93.7500 | 6.4 MB |
| ClassificationGpu | 7.708 ms | 0.1509 ms | 0.2796 ms | 1546.8750 | 125.0000 | 93.7500 | 6.4 MB |
| ObjectDetectionCpu | 147.487 ms | 2.6940 ms | 2.6459 ms | 18666.6667 | 333.3333 | 333.3333 | 77.97 MB |
| ObjectDetectionGpu | 39.935 ms | 0.2201 ms | 0.2059 ms | 18846.1538 |


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提 供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号