metaflow-service

metaflow-service

Metaflow元数据服务实现 优化机器学习工作流管理

Metaflow-service为Metaflow提供元数据服务实现,通过轻量级数据库封装跟踪Flows、Runs、Steps等Metaflow实体的元数据。项目包含元数据服务和迁移服务,支持数据库迁移和版本兼容性管理。提供REST API接口,支持Docker容器部署,简化机器学习工作流的元数据管理流程。

Metaflow元数据服务数据库迁移DockerPostgreSQLGithub开源项目

Metaflow Service

Metadata service implementation for Metaflow.

This provides a thin wrapper around a database and keeps track of metadata associated with metaflow entities such as Flows, Runs, Steps, Tasks, and Artifacts.

For more information, see Metaflow's admin docs

Getting Started

The service depends on the following Environment Variables to be set:

  • MF_METADATA_DB_HOST [defaults to localhost]
  • MF_METADATA_DB_PORT [defaults to 5432]
  • MF_METADATA_DB_USER [defaults to postgres]
  • MF_METADATA_DB_PSWD [defaults to postgres]
  • MF_METADATA_DB_NAME [defaults to postgres]

Optionally you can also overrider the host and port the service runs on

  • MF_METADATA_PORT [defaults to 8080]
  • MF_MIGRATION_PORT [defaults to 8082]
  • MF_METADATA_HOST [defaults to 0.0.0.0]

Create triggers to broadcast any database changes via pg_notify on channel NOTIFY:

  • DB_TRIGGER_CREATE
    • [metadata_service defaults to 0]
    • [ui_backend_service defaults to 1]
pip3 install ./ python3 -m services.metadata_service.server

Swagger UI: http://localhost:8080/api/doc

Using docker-compose

Easiest way to run this project is to use docker-compose and there are two options:

  • docker-compose.yml
    • Assumes that Dockerfiles are pre-built and local changes are not included automatically
    • See docker build section on how to pre-build the Docker images
  • docker-compose.development.yml
    • Development version
    • Includes automatic Dockerfile builds and mounts local ./services folder inside the container

Running docker-compose.yml:

docker-compose up -d

Running docker-compose.development.yml (recommended during development):

docker-compose -f docker-compose.development.yml up
  • Metadata service is available at port :8080.
  • Migration service is available at port :8082.
  • UI service is available at port :8083.

to access the container run

docker exec -it metadata_service /bin/bash

within the container curl the service directly

curl localhost:8080/ping

Using published image on DockerHub

Latest release of the image is available on dockerhub

docker pull netflixoss/metaflow_metadata_service

Be sure to set the proper env variables when running the image

docker run -e MF_METADATA_DB_HOST='<instance_name>.us-east-1.rds.amazonaws.com' \ -e MF_METADATA_DB_PORT=5432 \ -e MF_METADATA_DB_USER='postgres' \ -e MF_METADATA_DB_PSWD='postgres' \ -e MF_METADATA_DB_NAME='metaflow' \ -it -p 8082:8082 -p 8080:8080 metaflow_metadata_service

Running tests

Tests are run using Tox and pytest.

Run following command to execute tests in Dockerized environment:

docker-compose -f docker-compose.test.yml up -V --abort-on-container-exit

Above command will make sure there's PostgreSQL database available.

Usage without Docker:

The test suite requires a PostgreSQL database, along with the following environment variables for connecting the tested services to the DB.

  • MF_METADATA_DB_HOST=db_test
  • MF_METADATA_DB_PORT=5432
  • MF_METADATA_DB_USER=test
  • MF_METADATA_DB_PSWD=test
  • MF_METADATA_DB_NAME=test
# Run all tests tox # Run unit tests only tox -e unit # Run integration tests only tox -e integration # Run both unit & integrations tests in parallel tox -e unit,integration -p

Executing flows against a local Metadata service

With the metadata service up and running at http://localhost:8080, you are able to use this as the service when executing Flows with the Metaflow client locally via

METAFLOW_SERVICE_URL=http://localhost:8080 METAFLOW_DEFAULT_METADATA="service" python3 basicflow.py run

Alternatively you can configure a default profile with the service URL for the Metaflow client to use. See Configuring metaflow for instructions.

Migration Service

The Migration service is a tool to help users manage underlying DB migrations and launch the most recent compatible version of the metadata service

Note that it is possible to run the two services independently and a Dockerfile is supplied for each service. However the default Dockerfile combines the two services.

Also note that at runtime the migration service and the metadata service are completely disjoint and do not communicate with each other

Migrating to the latest db schema

Note may need to do a rolling restart to get latest version of the image if you don't have it already

You can manage the migration either via the api provided or with the utility cli provided with migration_tools.py

  • check status and note version you are on
    • Api: /db_schema_status
    • cli: python3 migration_tools.py db-status
  • see if there are migrations to be run
    • if there are any migrations to be run is_up_to_date should be false and a list of migrations to be applied will be shown under unapplied_migrations
  • take backup of db
    • in case anything goes wrong it is a good idea to take a back up of the db
  • migrations may cause downtime depending on what is being run as part of the migration
  • Note concurrent updates are not supported. it may be advisable to reduce your cluster size to a single node
  • upgrade db schema
    • Api: /upgrade
    • cli: python3 migration_tools.py upgrade
  • check status again to verify you are on up to date version
    • Api: /db_schema_status
    • cli: python3 migration_tools.py db-status
    • Note that is_up_to_date should be set to True and migration_in_progress should be set to False
  • do a rolling restart of the metadata service cluster
    • In order for the migration to be effective a full restart of the containers is required
  • latest available version of service should be ready
    • cli: python3 migration_tools.py metadata-service-version
  • If you had previously scaled down your cluster it should be safe to return it to the desired number of containers

Under the Hood: What is going on in the Docker Container

Within the published metaflow_metadata_service image the migration service is packaged along with the latest version of the metadata service compatible with every version of the db. This means that multiple versions of the metadata service comes bundled with the image, each is installed under a different virtual env.

When the container spins up, the migration service is launched first and determines what virtualenv to activate depending on the schema version of the DB. This will determine which version of the metadata service will run.

Release

See the release docs

Get in Touch

There are several ways to get in touch with us:

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多