metaflow-service

metaflow-service

Metaflow元数据服务实现 优化机器学习工作流管理

Metaflow-service为Metaflow提供元数据服务实现,通过轻量级数据库封装跟踪Flows、Runs、Steps等Metaflow实体的元数据。项目包含元数据服务和迁移服务,支持数据库迁移和版本兼容性管理。提供REST API接口,支持Docker容器部署,简化机器学习工作流的元数据管理流程。

Metaflow元数据服务数据库迁移DockerPostgreSQLGithub开源项目

Metaflow Service

Metadata service implementation for Metaflow.

This provides a thin wrapper around a database and keeps track of metadata associated with metaflow entities such as Flows, Runs, Steps, Tasks, and Artifacts.

For more information, see Metaflow's admin docs

Getting Started

The service depends on the following Environment Variables to be set:

  • MF_METADATA_DB_HOST [defaults to localhost]
  • MF_METADATA_DB_PORT [defaults to 5432]
  • MF_METADATA_DB_USER [defaults to postgres]
  • MF_METADATA_DB_PSWD [defaults to postgres]
  • MF_METADATA_DB_NAME [defaults to postgres]

Optionally you can also overrider the host and port the service runs on

  • MF_METADATA_PORT [defaults to 8080]
  • MF_MIGRATION_PORT [defaults to 8082]
  • MF_METADATA_HOST [defaults to 0.0.0.0]

Create triggers to broadcast any database changes via pg_notify on channel NOTIFY:

  • DB_TRIGGER_CREATE
    • [metadata_service defaults to 0]
    • [ui_backend_service defaults to 1]
pip3 install ./ python3 -m services.metadata_service.server

Swagger UI: http://localhost:8080/api/doc

Using docker-compose

Easiest way to run this project is to use docker-compose and there are two options:

  • docker-compose.yml
    • Assumes that Dockerfiles are pre-built and local changes are not included automatically
    • See docker build section on how to pre-build the Docker images
  • docker-compose.development.yml
    • Development version
    • Includes automatic Dockerfile builds and mounts local ./services folder inside the container

Running docker-compose.yml:

docker-compose up -d

Running docker-compose.development.yml (recommended during development):

docker-compose -f docker-compose.development.yml up
  • Metadata service is available at port :8080.
  • Migration service is available at port :8082.
  • UI service is available at port :8083.

to access the container run

docker exec -it metadata_service /bin/bash

within the container curl the service directly

curl localhost:8080/ping

Using published image on DockerHub

Latest release of the image is available on dockerhub

docker pull netflixoss/metaflow_metadata_service

Be sure to set the proper env variables when running the image

docker run -e MF_METADATA_DB_HOST='<instance_name>.us-east-1.rds.amazonaws.com' \ -e MF_METADATA_DB_PORT=5432 \ -e MF_METADATA_DB_USER='postgres' \ -e MF_METADATA_DB_PSWD='postgres' \ -e MF_METADATA_DB_NAME='metaflow' \ -it -p 8082:8082 -p 8080:8080 metaflow_metadata_service

Running tests

Tests are run using Tox and pytest.

Run following command to execute tests in Dockerized environment:

docker-compose -f docker-compose.test.yml up -V --abort-on-container-exit

Above command will make sure there's PostgreSQL database available.

Usage without Docker:

The test suite requires a PostgreSQL database, along with the following environment variables for connecting the tested services to the DB.

  • MF_METADATA_DB_HOST=db_test
  • MF_METADATA_DB_PORT=5432
  • MF_METADATA_DB_USER=test
  • MF_METADATA_DB_PSWD=test
  • MF_METADATA_DB_NAME=test
# Run all tests tox # Run unit tests only tox -e unit # Run integration tests only tox -e integration # Run both unit & integrations tests in parallel tox -e unit,integration -p

Executing flows against a local Metadata service

With the metadata service up and running at http://localhost:8080, you are able to use this as the service when executing Flows with the Metaflow client locally via

METAFLOW_SERVICE_URL=http://localhost:8080 METAFLOW_DEFAULT_METADATA="service" python3 basicflow.py run

Alternatively you can configure a default profile with the service URL for the Metaflow client to use. See Configuring metaflow for instructions.

Migration Service

The Migration service is a tool to help users manage underlying DB migrations and launch the most recent compatible version of the metadata service

Note that it is possible to run the two services independently and a Dockerfile is supplied for each service. However the default Dockerfile combines the two services.

Also note that at runtime the migration service and the metadata service are completely disjoint and do not communicate with each other

Migrating to the latest db schema

Note may need to do a rolling restart to get latest version of the image if you don't have it already

You can manage the migration either via the api provided or with the utility cli provided with migration_tools.py

  • check status and note version you are on
    • Api: /db_schema_status
    • cli: python3 migration_tools.py db-status
  • see if there are migrations to be run
    • if there are any migrations to be run is_up_to_date should be false and a list of migrations to be applied will be shown under unapplied_migrations
  • take backup of db
    • in case anything goes wrong it is a good idea to take a back up of the db
  • migrations may cause downtime depending on what is being run as part of the migration
  • Note concurrent updates are not supported. it may be advisable to reduce your cluster size to a single node
  • upgrade db schema
    • Api: /upgrade
    • cli: python3 migration_tools.py upgrade
  • check status again to verify you are on up to date version
    • Api: /db_schema_status
    • cli: python3 migration_tools.py db-status
    • Note that is_up_to_date should be set to True and migration_in_progress should be set to False
  • do a rolling restart of the metadata service cluster
    • In order for the migration to be effective a full restart of the containers is required
  • latest available version of service should be ready
    • cli: python3 migration_tools.py metadata-service-version
  • If you had previously scaled down your cluster it should be safe to return it to the desired number of containers

Under the Hood: What is going on in the Docker Container

Within the published metaflow_metadata_service image the migration service is packaged along with the latest version of the metadata service compatible with every version of the db. This means that multiple versions of the metadata service comes bundled with the image, each is installed under a different virtual env.

When the container spins up, the migration service is launched first and determines what virtualenv to activate depending on the schema version of the DB. This will determine which version of the metadata service will run.

Release

See the release docs

Get in Touch

There are several ways to get in touch with us:

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多