如果你觉得此工具不错,请轻轻点击此页面右上角Star按钮增加项目曝光度,谢谢!
If you think this tool is good, please gently click the Star button in the upper right corner at this page to increase the project exposure, thank you!
A library for users to write (experiment in research) configurations in Python Dict or JSON format, read and write parameter value via dot . in code, while can read parameters from the command line to modify values.
标签 Labels: Python, Command Line, commandline, config, configuration, parameters, 命令行,配置,传参,参数值修改。
Github URL: https://github.com/NaiboWang/CommandlineConfig
The following fields are reserved and cannot be used as parameter names: config_name.
-h# Install via pip pip3 install commandline_config # import package from commandline_config import Config # Define configuration dictionary config = { "index":1, "lr": 0.1, "dbinfo":{ "username": "NUS" } } # Generate configuration class based on configuration dict c = Config(config) # Print the configuration of the parameters print(c) # Read and write parameters directly via dot . and support multiple layers. c.index = 2 c.dbinfo.username = "ZJU" print(c.index, c.dbinfo.username, c["lr"]) # On the command line, modify the parameter values with -- python example.py --index 3 --dbinfo.username XDU # Get the parameter descriptions via the help method in the code, or on the command line via -h or -help (customization required, see detailed documentation below for details) c.help() python example.py -h
If you encounter any problems during using with this tool, please raise an issue in the github page of this project, I will solve the bugs and problems encountered at the first time.
Meanwhile, welcome to submit issues to propose what functions you want to add to this tool and I will implement them when possible.
There are two ways to install this library:
pip3 install commandline_config
If already installed, you can upgrade it by the following command:
pip3 install commandline_config --upgrade
/commandline_config folder of the github project into your own project directory, you need to install the dependency package prettytable:pip3 install prettytable
Or install via requirements.txt:
pip3 install -r requirements.txt
from commandline_config import Config
# comment. Currently supports nesting a dict inside another dict, and can nest unlimited layers.preset_config = { "index": 1, # Index of party "dataset": "mnist", 'lr': 0.01, # learning rate 'normalization': True, "pair": (1,2), "multi_information": [1, 0.5, 'test', "TEST"], # list "dbinfo": { "username": "NUS", "password": 123456, "retry_interval_time": 5.5, "save_password": False, "pair": ("test",3), "multi":{ "test":0.01, }, "certificate_info": ["1", 2, [3.5]], } }
That is, the initial configuration of the program is generated. Each key defined in preset_config dict is the parameter name and each value is the initial value of the parameter, and at the same time, the initial value type of the parameter is automatically detected according to the type of the set value.
The above configuration contains seven parameters: index, dataset, batch, normalization, pair, multi_information and dbinfo, where the type of the parameter index is automatically detected as int, the default value is 1 and the description is "Index of party".
Similarly, The type and default value of the second to fifth parameter are string: "mnist"; float:0.01; bool:True; tuple:(1,2); list:[1,0.5,'test', "TEST"].
The seventh parameter is a nested dictionary of type dict, which also contains 7 parameters, with the same type and default values as the first 7 parameters, and will not be repeated here.
preset_config dict to Config in any function you want.if __name__ == '__main__': config = Config(preset_config) # Or give the configuration a name: config_with_name = Config(preset_config, name="Federated Learning Experiments") # Or you can store the preset_config in local file configuration.json and pass the filename to the Config class. config_from_file = Config("configuration.json")
This means that the configuration object is successfully generated.
print function:print(config_with_name)
The output results are:
Configurations of Federated Learning Experiments:
+-------------------+-------+--------------------------+
| Key | Type | Value |
+-------------------+-------+--------------------------+
| index | int | 1 |
| dataset | str | mnist |
| lr | float | 0.01 |
| normalization | bool | True |
| pair | tuple | (1, 2) |
| multi_information | list | [1, 0.5, 'test', 'TEST'] |
| dbinfo | dict | See sub table below |
+-------------------+-------+--------------------------+
Configurations of dict dbinfo:
+---------------------+-------+---------------------+
| Key | Type | Value |
+---------------------+-------+---------------------+
| username | str | NUS |
| password | int | 123456 |
| retry_interval_time | float | 5.5 |
| save_password | bool | False |
| pair | tuple | ('test', 3) |
| multi | dict | See sub table below |
| certificate_info | list | ['1', 2, [3.5]] |
+---------------------+-------+---------------------+
Configurations of dict multi:
+------+-------+-------+
| Key | Type | Value |
+------+-------+-------+
| test | float | 0.01 |
+------+-------+-------+
Here the information of all parameters will be printed in table format. If you want to change the printing style, you can modify it by config_with_name.set_print_style(style=''). The values that can be taken for style are: both, table, json which means print both table and json at the same time, print only table, and json dictionary only.
E.g.:
# Only print json config_with_name.set_print_style('json') print(config_with_name) print("----------") # Print table and json at the same time config_with_name.set_print_style('table') print(config_with_name)
The output results are:
Configurations of Federated Learning Experiments:
{'index': 1, 'dataset': 'mnist', 'lr': 0.01, 'normalization': True, 'pair': (1, 2), 'multi_information': [1, 0.5, 'test', 'TEST'], 'dbinfo': 'See below'}
Configurations of dict dbinfo:
{'username': 'NUS', 'password': 123456, 'retry_interval_time': 5.5, 'save_password': False, 'pair': ('test', 3), 'multi': 'See below', 'certificate_info': ['1', 2, [3.5]]}
Configurations of dict multi:
{'test': 0.01}
----------
Configurations of Federated Learning Experiments:
+-------------------+-------+--------------------------+
| Key | Type | Value |
+-------------------+-------+--------------------------+
| index | int | 1 |
| dataset | str | mnist |
| lr | float | 0.01 |
| normalization | bool | True |
| pair | tuple | (1, 2) |
| multi_information | list | [1, 0.5, 'test', 'TEST'] |
| dbinfo | dict | See sub table below |
+-------------------+-------+--------------------------+
{'index': 1, 'dataset': 'mnist', 'lr': 0.01, 'normalization': True, 'pair': (1, 2), 'multi_information': [1, 0.5, 'test', 'TEST'], 'dbinfo': 'See below'}
Configurations of dict dbinfo:
+---------------------+-------+---------------------+
| Key | Type | Value |
+---------------------+-------+---------------------+
| username | str | NUS |
| password | int | 123456 |
| retry_interval_time | float | 5.5 |
| save_password | bool | False |
| pair | tuple | ('test', 3) |
| multi | dict | See sub table below |
| certificate_info | list | ['1', 2, [3.5]] |
+---------------------+-------+---------------------+
{'username': 'NUS', 'password': 123456, 'retry_interval_time': 5.5, 'save_password': False, 'pair': ('test', 3), 'multi': 'See below', 'certificate_info': ['1', 2, [3.5]]}
Configurations of dict multi:
+------+-------+-------+
| Key | Type | Value |
+------+-------+-------+
| test | float | 0.01 |
+------+-------+-------+
{'test': 0.01}
Configuration parameter values can be written in three ways.
To receive command line arguments, simply pass --index 1 on the command line to modify the value of index to 1. Also, the considerations for passing values to different types of arguments are:
0 or False for False, 1 or True or no value after the parameter for True: --normalization 1 or --normalization True or --normalization all can set the value of parameter normalization in the configuration to True.--nested-parameter-name.sub-parameter-name.sub-parameter-name.….sub-parameter-name value to modify the value in the nested object, such as --dbinfo.password 987654 to change the value of the password parameter in the dbinfo subobject to 987654; --dbinfo.multi.test 1 to change the value of the test parameter in the multi dict which is in dbinfo subobject to ```. Currently this tool can supports unlimited layers/levels of nesting.preset_config object defined above:python test.py --dbinfo.password 987654 --dbinfo.multi.test 1 --index 0 --dataset emnist --normalization 0 --multi_information [\'sdf\',1,\"3.3\",,True,[1,[]]]
config.index = 2 directly in the code to change the value of the parameter index to 2. Again, list type parameters can be assigned as empty or multidimensional arrays. For nested objects, you can use config.dbinfo.save_password=True to modify the value of the save_password parameter in sub dict dbinfo to True.preset_config does not match, the program will report an error, therefore, if you do not want to force type checking, you can use config["index"] = "sdf" to force the value of the parameter index to the string sdf (not recommended, it will cause unexpected impact).Read the value of the parameter dataset directly by means of config.dataset or config["dataset"].
print(config.dataset, config["index"])
The value of an argument a will be read by this order: the last value modified by config.a = * > the value of --a 2 specified by the command line > the initial value specified by "a":1 defined by preset_config.
For the list type, if a multidimensional array is passed, the information can be read via standard slice of python:
config.dbinfo.certificate_info = [1,[],[[2]]] print(config.dbinfo.certificate_info[2][0][0])
For parameters in a single nested object, there are four ways to read the values of the parameters, all of which can be read successfully:
print(config.dbinfo.username)
print(config["dbinfo"].password)
print(config.dbinfo["retry_interval_time"])
print(config["dbinfo"]["save_password"])
Simply pass the above config object as a parameter to the function and call it:
def print_dataset_name(c): print(c.dataset, c["dataset"], c.dbinfo.certificate_info) print_dataset_name(c=config)
A deep copy of the


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。