Sionna™ is an open-source Python library for link-level simulations of digital communication systems built on top of the open-source software library TensorFlow for machine learning.
The official documentation can be found here.
Sionna requires Python and Tensorflow. In order to run the tutorial notebooks on your machine, you also need JupyterLab. You can alternatively test them on Google Colab. Although not necessary, we recommend running Sionna in a Docker container.
Sionna requires TensorFlow 2.13-2.15 and Python 3.8-3.11. We recommend Ubuntu 22.04. Earlier versions of TensorFlow may still work but are not recommended because of known, unpatched CVEs.
To run the ray tracer on CPU, LLVM is required by DrJit. Please check the installation instructions for the LLVM backend.
We refer to the TensorFlow GPU support tutorial for GPU support and the required driver setup.
We recommend to do this within a virtual environment, e.g., using conda. On macOS, you need to install tensorflow-macos first.
1.) Install the package
pip install sionna
2.) Test the installation in Python
python
>>> import sionna
>>> print(sionna.__version__)
0.18.0
3.) Once Sionna is installed, you can run the Sionna "Hello, World!" example, have a look at the quick start guide, or at the tutorials.
The example notebooks can be opened and executed with Jupyter.
For a local installation, the JupyterLab Desktop application can be used which also includes the Python installation.
1.) Make sure that you have Docker installed on your system. On Ubuntu 22.04, you can run for example
sudo apt install docker.io
Ensure that your user belongs to the docker group (see Docker post-installation)
sudo usermod -aG docker $USER
Log out and re-login to load updated group memberships.
For GPU support on Linux, you need to install the NVIDIA Container Toolkit.
2.) Build the Sionna Docker image. From within the Sionna directory, run
make docker
3.) Run the Docker image with GPU support
make run-docker gpus=all
or without GPU:
make run-docker
This will immediately launch a Docker image with Sionna installed, running JupyterLab on port 8888.
4.) Browse through the example notebooks by connecting to http://127.0.0.1:8888 in your browser.
We recommend to do this within a virtual environment, e.g., using conda.
1.) Clone this repository and execute from within its root folder
make install
2.) Test the installation in Python
>>> import sionna
>>> print(sionna.__version__)
0.18.0
Sionna is Apache-2.0 licensed, as found in the LICENSE file.
If you use this software, please cite it as:
@article{sionna, title = {Sionna: An Open-Source Library for Next-Generation Physical Layer Research}, author = {Hoydis, Jakob and Cammerer, Sebastian and {Ait Aoudia}, Fayçal and Vem, Avinash and Binder, Nikolaus and Marcus, Guillermo and Keller, Alexander}, year = {2022}, month = {Mar.}, journal = {arXiv preprint}, online = {https://arxiv.org/abs/2203.11854} }


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号