SuPreM

SuPreM

基于大规模数据集的三维医学影像分析预训练模型套件

SuPreM是一套基于大规模数据集和每体素标注的预训练3D模型,在多种医学影像任务中展现出优秀的迁移能力。该项目结合AbdomenAtlas 1.1数据集(9,262个带注释CT扫描)和多个先进AI模型,为三维医学图像分析提供了基础数据集和模型,有助于提升该领域的研究效率和算法性能。

SuPreM医学影像分析3D模型迁移学习大规模数据集Github开源项目
<div align="center">

logo
Subscribe us: https://groups.google.com/u/2/g/bodymaps

</div>

We developed a suite of pre-trained 3D models, named SuPreM, that combined the best of large-scale datasets and per-voxel annotations, showing the transferability across a range of 3D medical imaging tasks.

Paper

<b>AbdomenAtlas: A Large-Scale, Detailed-Annotated, & Multi-Center Dataset for Efficient Transfer Learning and Open Algorithmic Benchmarking</b> <br/> Wenxuan Li, Chongyu Qu, Xiaoxi Chen, Pedro R. A. S. Bassi, Yijia Shi, Yuxiang Lai, Qian Yu, Huimin Xue, Yixiong Chen, Xiaorui Lin, Yutong Tang, Yining Cao, Haoqi Han, Zheyuan Zhang, Jiawei Liu, Tiezheng Zhang, Yujiu Ma, Jincheng Wang, Guang Zhang, Alan Yuille, Zongwei Zhou* <br/> Johns Hopkins University <br/> Medical Image Analysis, 2024 <br/> <a href='https://www.zongweiz.com/dataset'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://www.cs.jhu.edu/~alanlab/Pubs24/li2024abdomenatlas.pdf'><img src='https://img.shields.io/badge/Paper-PDF-purple'></a>

<b>How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?</b> <br/> Wenxuan Li, Alan Yuille, and Zongwei Zhou<sup>*</sup> <br/> Johns Hopkins University <br/> International Conference on Learning Representations (ICLR) 2024 (oral; top 1.2%) <br/> <a href='https://www.zongweiz.com/dataset'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://www.cs.jhu.edu/~alanlab/Pubs23/li2023suprem.pdf'><img src='https://img.shields.io/badge/Paper-PDF-purple'></a> <a href='document/promotion_slides.pdf'><img src='https://img.shields.io/badge/Slides-PDF-orange'></a> <a href='document/dom_wse_poster.pdf'><img src='https://img.shields.io/badge/Poster-PDF-blue'></a> YouTube <a href='https://www.cs.jhu.edu/news/ai-and-radiologists-unite-to-map-the-abdomen/'><img src='https://img.shields.io/badge/WSE-News-yellow'></a>

<b>Transitioning to Fully-Supervised Pre-Training with Large-Scale Radiology ImageNet for Improved AI Transferability in Three-Dimensional Medical Segmentation</b> <br/> Wenxuan Li<sup>1</sup>, Junfei Xiao<sup>1</sup>, Jie Liu<sup>2</sup>, Yucheng Tang<sup>3</sup>, Alan Yuille<sup>1</sup>, and Zongwei Zhou<sup>1,*</sup> <br/> <sup>1</sup>Johns Hopkins University <br/> <sup>2</sup>City University of Hong Kong <br/> <sup>3</sup>NVIDIA <br/> Radiological Society of North America (RSNA) 2023 <br/> <a href='document/rsna_abstract.pdf'><img src='https://img.shields.io/badge/Abstract-PDF-purple'></a> <a href='document/rsna_slides.pdf'><img src='https://img.shields.io/badge/Slides-PDF-orange'></a>

★ We have maintained a document for Frequently Asked Questions.

★ We have maintained a paper list for Awesome Medical SAM.

★ We have maintained a paper list for Awesome Medical Pre-Training.

★ We have maintained a paper list for Awesome Medical Segmentation Backbones.

An Extensive Dataset: AbdomenAtlas 1.1

The release of AbdomenAtlas 1.0 can be found at https://huggingface.co/datasets/AbdomenAtlas/AbdomenAtlas1.0Mini

AbdomenAtlas 1.1 is an extensive dataset of 9,262 CT volumes with per-voxel annotation of 25 organs and pseudo annotations for seven types of tumors, enabling us to finally perform supervised pre-training of AI models at scale. Based on AbdomenAtlas 1.1, we also provide a suite of pre-trained models comprising several widely recognized AI models.

<p align="center"><img width="100%" src="document/fig_benchmark.png" /></p>

Prelimianry benchmark showed that supervised pre-training strikes as a preferred choice in terms of performance and efficiency compared with self-supervised pre-training.

We anticipate that the release of large, annotated datasets (AbdomenAtlas 1.1) and the suite of pre-trained models (SuPreM) will bolster collaborative endeavors in establishing Foundation Datasets and Foundation Models for the broader applications of 3D volumetric medical image analysis.

The AbdomenAtlas 1.1 dataset is organized as

AbdomenAtlas1.1
    ├── BDMAP_00000001
    │   ├── ct.nii.gz
    │   └── segmentations
    │       ├── aorta.nii.gz
    │       ├── gall_bladder.nii.gz
    │       ├── kidney_left.nii.gz
    │       ├── kidney_right.nii.gz
    │       ├── liver.nii.gz
    │       ├── pancreas.nii.gz
    │       ├── postcava.nii.gz
    │       ├── spleen.nii.gz
    │       ├── stomach.nii.gz
    │       └── ...
    ├── BDMAP_00000002
    │   ├── ct.nii.gz
    │   └── segmentations
    │       ├── aorta.nii.gz
    │       ├── gall_bladder.nii.gz
    │       ├── kidney_left.nii.gz
    │       ├── kidney_right.nii.gz
    │       ├── liver.nii.gz
    │       ├── pancreas.nii.gz
    │       ├── postcava.nii.gz
    │       ├── spleen.nii.gz
    │       ├── stomach.nii.gz
    │       └── ...
    ├── BDMAP_00000003
    │   ├── ct.nii.gz
    │   └── segmentations
    │       ├── aorta.nii.gz
    │       ├── gall_bladder.nii.gz
    │       ├── kidney_left.nii.gz
    │       ├── kidney_right.nii.gz
    │       ├── liver.nii.gz
    │       ├── pancreas.nii.gz
    │       ├── postcava.nii.gz
    │       ├── spleen.nii.gz
    │       ├── stomach.nii.gz
    │       └── ...
    ...

A Suite of Pre-trained Models: SuPreM

The following is a list of supported model backbones in our collection. Select the appropriate family of backbones and click to expand the table, download a specific backbone and its pre-trained weights (name and download), and save the weights into ./pretrained_weights/. More backbones will be added along time. Please suggest the backbone in this channel if you want us to pre-train it on AbdomenAtlas 1.1 containing 9,262 annotated CT volumes.

<details> <summary style="margin-left: 25px;">Swin UNETR</summary> <div style="margin-left: 25px;">
nameparamspre-trained dataresourcesdownload
Tang et al.62.19M5050 CTGitHub starsweights
Jose Valanaras et al.62.19M50000 CT/MRIGitHub starsweights
Universal Model62.19M2100 CTGitHub starsweights
SuPreM62.19M2100 CTours :star2:weights
</div> </details> <details> <summary style="margin-left: 25px;">U-Net</summary> <div style="margin-left: 25px;">
nameparamspre-trained dataresourcesdownload
Models Genesis19.08M623 CTGitHub starsweights
UniMiSStiny5022 CT&MRIGitHub starsweights
small5022 CT&MRIweights
Med3D85.75M1638 CTGitHub starsweights
DoDNet17.29M920 CTGitHub starsweights
Universal Model19.08M2100 CTGitHub starsweights
SuPreM19.08M2100 CTours :star2:weights
</div> </details> <details> <summary style="margin-left: 25px;">SegResNet</summary> <div style="margin-left: 25px;">
nameparamspre-trained dataresourcesdownload
SuPreM4.70M2100 CTours :star2:weights
</div> </details>

Examples of predicting organ masks on unseen CT volumes using our SuPreM: README

Examples of fine-tuning our SuPreM on other downstream medical tasks are provided in this repository.

taskdatasetdocument
organ, muscle, vertebrae, cardiac, rib segmentationTotalSegmentatorREADME
pancreas tumor detectionJHHREADME

If you want to re-pre-train SuPreM on AbdomenAtlas 1.1 (not recommended), please refer to our instruction

Estimated cost:

  • Eight A100 GPUs
  • At least seven days
  • 733GB disk space

★ Or simply make a request here: https://github.com/MrGiovanni/SuPreM/issues/1

Citation

@article{li2024abdomenatlas,
  title={AbdomenAtlas: A large-scale, detailed-annotated, \& multi-center dataset for efficient transfer learning and open algorithmic benchmarking},
  author={Li, Wenxuan and Qu, Chongyu and Chen, Xiaoxi and Bassi, Pedro RAS and Shi, Yijia and Lai, Yuxiang and Yu, Qian and Xue, Huimin and Chen, Yixiong and Lin, Xiaorui and others},
  journal={Medical Image Analysis},
  pages={103285},
  year={2024},
  publisher={Elsevier},
  url={https://github.com/MrGiovanni/AbdomenAtlas}
}

@inproceedings{li2024well,
  title={How Well Do Supervised Models Transfer to 3D Image Segmentation?},
  author={Li, Wenxuan and Yuille, Alan and Zhou, Zongwei},
  booktitle={The

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多