Making neural networks more interpretable, for research and art.
<!-- [](https://app.gitbook.com/@mayukh09/s/torch-dreams/) --> <img src = "https://github.com/Mayukhdeb/torch-dreams/blob/master/images/banner_segmentation_model.png?raw=true">pip install torch-dreams
custom_funcMake sure you also check out the quick start colab notebook
import matplotlib.pyplot as plt import torchvision.models as models from torch_dreams import Dreamer model = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device = 'cuda') image_param = dreamy_boi.render( layers = [model.Mixed_5b], ) plt.imshow(image_param) plt.show()
model = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device = 'cuda', quiet = False) image_param = dreamy_boi.render( layers = [model.Mixed_5b], width = 256, height = 256, iters = 150, lr = 9e-3, rotate_degrees = 15, scale_max = 1.2, scale_min = 0.5, translate_x = 0.2, translate_y = 0.2, custom_func = None, weight_decay = 1e-2, grad_clip = 1., ) plt.imshow(image_param) plt.show()
custom_funcmodel = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device = 'cuda') layers_to_use = [model.Mixed_6b.branch1x1.conv] def make_custom_func(layer_number = 0, channel_number= 0): def custom_func(layer_outputs): loss = layer_outputs[layer_number][:, channel_number].mean() return -loss return custom_func my_custom_func = make_custom_func(layer_number= 0, channel_number = 119) image_param = dreamy_boi.render( layers = layers_to_use, custom_func = my_custom_func, ) plt.imshow(image_param) plt.show()
The BatchedAutoImageParam paired with the BatchedObjective can be used to generate multiple feature visualizations in parallel. This takes up more memory based on the batch size, but is also faster than generating one visualization at a time.
from torch_dreams import Dreamer import torchvision.models as models from torch_dreams.batched_objective import BatchedObjective from torch_dreams.batched_image_param import BatchedAutoImageParam model = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device="cuda") ## specify list of neuron indices to visualize batch_neuron_indices = [i for i in range(10,20)] ## set up a batch of trainable image parameters bap = BatchedAutoImageParam( batch_size=len(batch_neuron_indices), width=256, height=256, standard_deviation=0.01 ) ## objective generator for each neuron def make_custom_func(layer_number=0, channel_number=0): def custom_func(layer_outputs): loss = layer_outputs[layer_number][:, channel_number].norm() return -loss return custom_func ## prepare objective functions for each neuron index batched_objective = BatchedObjective( objectives=[make_custom_func(channel_number=i) for i in batch_neuron_indices] ) ## render activation maximization signals result_batch = dreamy_boi.render( layers=[model.Mixed_5b], image_parameter=bap, iters=120, custom_func=batched_objective, ) ## save results in a folder for i in batch_neuron_indices: result_batch[batch_neuron_indices.index(i)].save(f"results/{i}.jpg")
Caricatures create a new image that has a similar but more extreme activation pattern to the input image at a given layer (or multiple layers at a time). It's inspired from this issue
<img src = "https://raw.githubusercontent.com/Mayukhdeb/torch-dreams/master/images/caricature.png" width = "70%">In this case, let's use googlenet
model = models.googlenet(pretrained = True) dreamy_boi = Dreamer(model = model, quiet= False, device= 'cuda') image_param = dreamy_boi.caricature( input_tensor = image_tensor, layers = [model.inception4c], ## feel free to append more layers for more interesting caricatures power= 1.2, ## higher -> more "exaggerated" features ) plt.imshow(image_param) plt.show()
First, let's pick 2 models and specify which layers we'd want to work with
from torch_dreams.model_bunch import ModelBunch bunch = ModelBunch( model_dict = { 'inception': models.inception_v3(pretrained=True).eval(), 'resnet': models.resnet18(pretrained= True).eval() } ) layers_to_use = [ bunch.model_dict['inception'].Mixed_6a, bunch.model_dict['resnet'].layer2[0].conv1 ] dreamy_boi = Dreamer(model = bunch, quiet= False, device= 'cuda')
Then define a custom_func which determines which exact activations of the models we have to optimize
def custom_func(layer_outputs): loss = layer_outputs[0].mean()*2.0 + layer_outputs[1][:, 89].mean() return -loss
Run the optimization
image_param = dreamy_boi.render( layers = layers_to_use, custom_func= custom_func, iters= 100 ) plt.imshow(image_param) plt.show()
import torchvision.transforms as transforms model =


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号