torch-dreams

torch-dreams

神经网络可视化与解释性增强工具

Torch-Dreams是一个Python库,专注于神经网络可视化和增强模型可解释性。它提供特征可视化、通道激活和多模型同步可视化等功能,支持批量处理和自定义变换。这个工具适合研究人员分析深度学习模型内部机制,也可用于生成艺术创作。

Torch-Dreams神经网络可解释性特征可视化图像生成Github开源项目

Torch-Dreams

Making neural networks more interpretable, for research and art.

Open In Colab build codecov

<!-- [![](https://img.shields.io/twitter/url?label=Docs&style=flat-square&url=https%3A%2F%2Fapp.gitbook.com%2F%40mayukh09%2Fs%2Ftorch-dreams%2F)](https://app.gitbook.com/@mayukh09/s/torch-dreams/) --> <img src = "https://github.com/Mayukhdeb/torch-dreams/blob/master/images/banner_segmentation_model.png?raw=true">
pip install torch-dreams 

Contents:

Minimal example

Make sure you also check out the quick start colab notebook

import matplotlib.pyplot as plt import torchvision.models as models from torch_dreams import Dreamer model = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device = 'cuda') image_param = dreamy_boi.render( layers = [model.Mixed_5b], ) plt.imshow(image_param) plt.show()

Not so minimal example

model = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device = 'cuda', quiet = False) image_param = dreamy_boi.render( layers = [model.Mixed_5b], width = 256, height = 256, iters = 150, lr = 9e-3, rotate_degrees = 15, scale_max = 1.2, scale_min = 0.5, translate_x = 0.2, translate_y = 0.2, custom_func = None, weight_decay = 1e-2, grad_clip = 1., ) plt.imshow(image_param) plt.show()

Visualizing individual channels with custom_func

model = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device = 'cuda') layers_to_use = [model.Mixed_6b.branch1x1.conv] def make_custom_func(layer_number = 0, channel_number= 0): def custom_func(layer_outputs): loss = layer_outputs[layer_number][:, channel_number].mean() return -loss return custom_func my_custom_func = make_custom_func(layer_number= 0, channel_number = 119) image_param = dreamy_boi.render( layers = layers_to_use, custom_func = my_custom_func, ) plt.imshow(image_param) plt.show()

Batched generation for large scale experiments

The BatchedAutoImageParam paired with the BatchedObjective can be used to generate multiple feature visualizations in parallel. This takes up more memory based on the batch size, but is also faster than generating one visualization at a time.

from torch_dreams import Dreamer import torchvision.models as models from torch_dreams.batched_objective import BatchedObjective from torch_dreams.batched_image_param import BatchedAutoImageParam model = models.inception_v3(pretrained=True) dreamy_boi = Dreamer(model, device="cuda") ## specify list of neuron indices to visualize batch_neuron_indices = [i for i in range(10,20)] ## set up a batch of trainable image parameters bap = BatchedAutoImageParam( batch_size=len(batch_neuron_indices), width=256, height=256, standard_deviation=0.01 ) ## objective generator for each neuron def make_custom_func(layer_number=0, channel_number=0): def custom_func(layer_outputs): loss = layer_outputs[layer_number][:, channel_number].norm() return -loss return custom_func ## prepare objective functions for each neuron index batched_objective = BatchedObjective( objectives=[make_custom_func(channel_number=i) for i in batch_neuron_indices] ) ## render activation maximization signals result_batch = dreamy_boi.render( layers=[model.Mixed_5b], image_parameter=bap, iters=120, custom_func=batched_objective, ) ## save results in a folder for i in batch_neuron_indices: result_batch[batch_neuron_indices.index(i)].save(f"results/{i}.jpg")

Caricatures

Caricatures create a new image that has a similar but more extreme activation pattern to the input image at a given layer (or multiple layers at a time). It's inspired from this issue

<img src = "https://raw.githubusercontent.com/Mayukhdeb/torch-dreams/master/images/caricature.png" width = "70%">

In this case, let's use googlenet

model = models.googlenet(pretrained = True) dreamy_boi = Dreamer(model = model, quiet= False, device= 'cuda') image_param = dreamy_boi.caricature( input_tensor = image_tensor, layers = [model.inception4c], ## feel free to append more layers for more interesting caricatures power= 1.2, ## higher -> more "exaggerated" features ) plt.imshow(image_param) plt.show()

Visualize features from multiple models on a single image parameter

First, let's pick 2 models and specify which layers we'd want to work with

from torch_dreams.model_bunch import ModelBunch bunch = ModelBunch( model_dict = { 'inception': models.inception_v3(pretrained=True).eval(), 'resnet': models.resnet18(pretrained= True).eval() } ) layers_to_use = [ bunch.model_dict['inception'].Mixed_6a, bunch.model_dict['resnet'].layer2[0].conv1 ] dreamy_boi = Dreamer(model = bunch, quiet= False, device= 'cuda')

Then define a custom_func which determines which exact activations of the models we have to optimize

def custom_func(layer_outputs): loss = layer_outputs[0].mean()*2.0 + layer_outputs[1][:, 89].mean() return -loss

Run the optimization

image_param = dreamy_boi.render( layers = layers_to_use, custom_func= custom_func, iters= 100 ) plt.imshow(image_param) plt.show()

Using custom transforms:

import torchvision.transforms as transforms model =

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多