Papers-in-100-Lines-of-Code

Papers-in-100-Lines-of-Code

45篇深度学习论文的100行代码实现集锦

Papers-in-100-Lines-of-Code项目汇集了45篇深度学习领域重要论文的精简实现。覆盖范围广泛,从经典网络架构到前沿神经渲染技术,每个算法都浓缩为100行以内的代码。这种简洁实现有助于理解算法核心思想,为研究者和开发者提供了快速上手的机会。项目既展示了复杂算法的精髓,又为深度学习实践提供了便捷途径。

深度学习神经网络机器学习计算机视觉NeRFGithub开源项目

my badge Contributions welcome License: MIT

Papers in 100 Lines of Code

Implementation of papers in 100 lines of code.

Implemented papers

[Maxout Networks]
  • Maxout Networks [arXiv]
  • Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, Yoshua Bengio
  • 2013-02-18
[Network In Network]
  • Network In Network [arXiv]
  • Min Lin, Qiang Chen, Shuicheng Yan
  • 2013-12-13
[Playing Atari with Deep Reinforcement Learning]
  • Playing Atari with Deep Reinforcement Learning [arXiv]
  • Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller
  • 2013-12-19
[Auto-Encoding Variational Bayes]
  • Auto-Encoding Variational Bayes [arXiv]
  • Diederik P Kingma, Max Welling
  • 2013-12-20
[Generative Adversarial Networks]
  • Generative Adversarial Networks [arXiv]
  • Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio
  • 2014-06-10
[Conditional Generative Adversarial Nets]
  • Conditional Generative Adversarial Nets [arXiv]
  • Mehdi Mirza, Simon Osindero
  • 2014-11-06
[Adam: A Method for Stochastic Optimization]
  • Adam: A Method for Stochastic Optimization [arXiv]
  • Diederik P. Kingma, Jimmy Ba
  • 2014-12-22
[NICE: Non-linear Independent Components Estimation]
  • NICE: Non-linear Independent Components Estimation [arXiv]
  • Laurent Dinh, David Krueger, Yoshua Bengio
  • 2014-10-30
[Deep Unsupervised Learning using Nonequilibrium Thermodynamics]
  • Deep Unsupervised Learning using Nonequilibrium Thermodynamics [arXiv]
  • Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
  • 2015-03-12
[Variational Inference with Normalizing Flows]
  • Variational Inference with Normalizing Flows [arXiv]
  • Danilo Jimenez Rezende, Shakir Mohamed
  • 2015-05-21
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks]
  • Convolutional Generative Adversarial Networks [arXiv]
  • Alec Radford, Luke Metz, Soumith Chintala
  • 2015-11-19
[Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)]
  • Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) [arXiv]
  • Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
  • 2015-11-23
[Adversarially Learned Inference]
  • Adversarially Learned Inference [arXiv]
  • Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, Aaron Courville
  • 2016-06-02
[Improved Techniques for Training GANs]
  • Improved Techniques for Training GANs [arXiv]
  • Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen
  • 2016-06-10
[Gaussian Error Linear Units (GELUs)]
  • Gaussian Error Linear Units (GELUs) [arXiv]
  • Dan Hendrycks, Kevin Gimpel
  • 2016-06-27
[Least Squares Generative Adversarial Networks]
  • Least Squares Generative Adversarial Networks [arXiv]
  • Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, Stephen Paul Smolley
  • 2016-11-13
[Image-to-Image Translation with Conditional Adversarial Networks]
  • Image-to-Image Translation with Conditional Adversarial Networks [arXiv]
  • Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros
  • 2016-11-21
[Wasserstein GAN]
  • Wasserstein GAN [arXiv]
  • Martin Arjovsky, Soumith Chintala, Léon Bottou
  • 2017-01-26
[Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks]
  • Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [arXiv]
  • Chelsea Finn, Pieter Abbeel, Sergey Levine
  • 2017-03-09
[Improved Training of Wasserstein GANs]
  • Improved Training of Wasserstein GANs [arXiv]
  • Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville
  • 2017-03-31
[Adversarial Feature Learning]
  • Adversarial Feature Learning [arXiv]
  • Jeff Donahue, Philipp Krähenbühl, Trevor Darrell
  • 2017-04-03
[Self-Normalizing Neural Networks]
  • Self-Normalizing Neural Networks [arXiv]
  • Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter
  • 2017-06-08
[Deep Image Prior]
  • Deep Image Prior [arXiv]
  • Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky
  • 2017-11-29
[On First-Order Meta-Learning Algorithms]
  • On First-Order Meta-Learning Algorithms [arXiv]
  • Alex Nichol, Joshua Achiam, John Schulman
  • 2018-03-08
[Sequential Neural Likelihood]
  • Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows [arXiv]
  • George Papamakarios, David C. Sterratt, Iain Murray
  • 2018-05-18
[On the Variance of the Adaptive Learning Rate and Beyond]
  • On the Variance of the Adaptive Learning Rate and Beyond [arXiv]
  • Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, Jiawei Han
  • 2019-08-08
[Optimizing Millions of Hyperparameters by Implicit Differentiation]
  • Optimizing Millions of Hyperparameters by Implicit Differentiation [PMLR]
  • Jonathan Lorraine, Paul Vicol, David Duvenaud
  • 2019-10-06
[Implicit Neural Representations with Periodic Activation Functions]
  • Implicit Neural Representations with Periodic Activation Functions [arXiv]
  • Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein
  • 2020-06-17
[Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains]
  • Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains [arXiv]
  • Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng
  • 2020-06-18
[Denoising Diffusion Probabilistic Models]
  • Denoising Diffusion Probabilistic Models [arXiv]
  • Jonathan Ho, Ajay Jain, Pieter Abbeel
  • 2020-06-19
[Likelihood-free MCMC with Amortized Approximate Ratio Estimators]
  • Likelihood-free MCMC with Amortized Approximate Ratio Estimators [PMLR]
  • Joeri Hermans, Volodimir Begy, Gilles Louppe
  • 2020-06-26
[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]
  • NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [arXiv]
  • Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
  • 2020-08-03
[Multiplicative Filter Networks]
  • Multiplicative Filter Networks [OpenReview]
  • Rizal Fathony, Anit Kumar Sahu, Devin Willmott, J Zico Kolter
  • 2020-09-28
[Learned Initializations for Optimizing Coordinate-Based Neural Representations]
  • Learned Initializations for Optimizing Coordinate-Based Neural Representations [arXiv]
  • Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, Ren Ng
  • 2020-12-03
[FastNeRF: High-Fidelity Neural Rendering at 200FPS]
  • FastNeRF: High-Fidelity Neural Rendering at 200FPS [arXiv]
  • Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, Julien Valentin
  • 2021-03-18
[KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs]
  • KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs [arXiv]
  • Christian Reiser, Songyou Peng, Yiyi Liao, Andreas Geiger
  • 2021-03-25
[PlenOctrees for Real-time Rendering of Neural Radiance Fields]
  • PlenOctrees for Real-time Rendering of Neural Radiance Fields [arXiv]
  • Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, Angjoo Kanazawa
  • 2021-03-25
[NeRF--: Neural Radiance Fields Without Known Camera Parameters]
  • NeRF--: Neural Radiance Fields Without Known Camera Parameters [arXiv]
  • Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, Victor Adrian Prisacariu
  • 2021-02-14
[Gromov-Wasserstein Distances between Gaussian Distributions]
  • Gromov-Wasserstein Distances between Gaussian Distributions [arXiv]
  • Antoine Salmona, Julie Delon, Agnès Desolneux
  • 2021-08-16
[Plenoxels: Radiance Fields without Neural Networks]
  • Plenoxels: Radiance Fields without Neural Networks [arXiv]
  • Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa
  • 2021-12-09
[InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering]
  • InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [arXiv]
  • Mijeong Kim, Seonguk Seo, Bohyung Han
  • 2021-12-31
[Instant Neural Graphics Primitives with a Multiresolution Hash Encoding]
  • Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [arXiv]
  • Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller
  • 2022-01-16
[Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow]
  • Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow [arXiv]
  • Xingchao Liu, Chengyue Gong, Qiang Liu
  • 2022-09-07
[K-Planes: Explicit Radiance Fields in Space, Time, and Appearance]
  • K-Planes: Explicit Radiance Fields in Space, Time, and Appearance [arXiv]
  • Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, Angjoo Kanazawa
  • 2023-01-24
[FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency Regularization]
  • FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency Regularization [arXiv]
  • Jiawei Yang, Marco Pavone, Yue Wang

编辑推荐精选

问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多