这是米兰理工大学推荐系统课程的官方代码仓库。
由米兰理工大学助理教授<a href="https://mauriziofd.github.io/" target="_blank">Maurizio Ferrari Dacrema</a>开发。 访问我们的推荐系统小组和量子计算小组网站,了解更多关于我们团队、论文和研究活动的信息。 课程介绍幻灯片可在此处获取。 安装说明请参见以下安装部分。
scikit-optimize的简单封装,允许简单快速地进行参数调优。 BayesianSkoptSearch对象将保存以下文件:
Cython代码已经为Linux和Windows x86(常见个人电脑架构)以及ppc64(IBM Power PC)预编译。要重新编译代码,只需按照安装部分所述运行cython编译脚本即可。 该代码适用于Linux和Windows系统。
请注意,本仓库需要Python 3.8
首先,我们建议您使用conda为此项目创建一个环境
首先检出该仓库,然后进入仓库文件夹并运行以下命令来创建和激活新环境:
conda create -n RecSysFramework python=3.8 anaconda conda activate RecSysFramework
然后使用以下命令安装所有要求和依赖项。
pip install -r requirements.txt
此时,您必须编译所有Cython算法。 要进行编译,您必须首先安装:gcc_和_python3 dev。在Linux下,可以使用以下命令安装:
sudo apt install gcc sudo apt-get install python3-dev
如果您使用Windows操作系统,安装过程会稍微复杂一些。您可以参考这个指南。
现在您可以通过运行以下命令来编译所有Cython算法。该脚本将在当前活动环境中进行编译。该代码适用于Linux和Windows平台。在编译过程中,您可能会看到一些警告。
python run_compile_all_cython.py
如果您在Kaggle笔记本上导入此仓库,请尝试如下编译:
!git clone https://github.com/MaurizioFD/RecSys_Course_AT_PoliMi cd RecSys_Course_AT_PoliMi !python run_compile_all_cython.py
此外,请记住,包含空格的文件夹和文件名通常会导致问题,例如Google Drive中Colab的默认文件夹名称是"Colab Notebooks",其中包含一个空格,很可能导致Cython文件编译失败。如果发生这种情况,请将空格替换为其他字符,例如"Colab_Notebooks"
包含一些基本模块和不同推荐器类型的基类。
Evaluator 类用于评估推荐器对象。它计算各种指标:
评估器接收要测试推荐器的 URM 作为输入,然后是一系列截断值(例如 5、20),如有必要,还需要一个用于计算多样性的对象。 evaluateRecommender 函数只需要您想要评估的推荐器对象作为输入,并返回一个字典形式的 {截断值: 结果},其中结果是 {指标: 值},以及一个格式良好的可打印字符串。
from Base.Evaluation.Evaluator import EvaluatorHoldout evaluator_test = EvaluatorHoldout(URM_test, [5, 20]) results_run_dict, results_run_string = evaluator_test.evaluateRecommender(recommender_instance) print(results_run_string)
相似度模块允许计算物品-物品或用户-用户相似度。 通过调用 Compute_Similarity 类并传递所需的相似度和您希望使用的稀疏矩阵来使用它。
它能够计算以下相似度:余弦、调整余弦、Jaccard、Tanimoto、Pearson 和欧几里得(线性和指数)
similarity = Compute_Similarity(URM_train, shrink=shrink, topK=topK, normalize=normalize, similarity = "cosine") W_sparse = similarity.compute_similarity()
所有推荐器都继承自 BaseRecommender,因此具有相同的接口。 在实例化推荐器时必须提供数据,然后调用 fit 函数来构建相应的模型。
每个推荐器都有一个 _compute_item_score 函数,给定一个 user_id 数组,计算所有物品的预测或 得分。 BaseRecommender 的 recommend 函数执行进一步的操作,如移除已见物品和计算所需长度的推荐列表。
示例如下:
user_id = 158 recommender_instance = ItemKNNCFRecommender(URM_train) recommender_instance.fit(topK=150) recommended_items = recommender_instance.recommend(user_id, cutoff = 20, remove_seen_flag=True) recommender_instance = SLIM_ElasticNet(URM_train) recommender_instance.fit(topK=150, l1_ratio=0.1, alpha = 1.0) recommended_items = recommender_instance.recommend(user_id, cutoff = 20, remove_seen_flag=True)
DataReader 对象从原始文件读取数据集并将其保存为稀疏矩阵。
DataSplitter 对象以 DataReader 为输入,并以选定的方式分割相应的数据集。 在每个步骤中,数据会自动保存在一个文件夹中,但可以通过在调用 load_data 时设置 save_folder_path = False 来阻止这种行为。 如果调用已处理过的数据集的 DataReader 或 DataSplitter,则会加载已保存的数据。
DataPostprocessing 也可以应用于 dataReader 和 dataSplitter 之间,并且可以相互嵌套。
当您构建了所需的数据集/预处理/分割组合后,调用 load_data 获取数据。
dataset = Movielens1MReader() dataset = DataPostprocessing_K_Cores(dataset, k_cores_value=25) dataset = DataPostprocessing_User_sample(dataset, user_quota=0.3) dataset = DataPostprocessing_Implicit_URM(dataset) dataSplitter = DataSplitter_leave_k_out(dataset) dataSplitter.load_data() URM_train, URM_validation, URM_test = dataSplitter.get_holdout_split()


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适 应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站 式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线 上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号