nnDetection

nnDetection

自适应医学目标检测框架

nnDetection是一个自适应医学目标检测框架,能够自动配置以适应不同医学检测任务。该框架在ADAM和LUNA16等公共基准测试中展现出与顶尖方法相当或更优的性能。项目支持Docker容器和本地安装,提供多个医学数据集的处理指南,便于复现实验结果和集成新数据集。nnDetection为医学目标检测研究提供了标准化接口和自动化工作流程。

nnDetection医学目标检测自动配置深度学习计算机辅助诊断Github开源项目
<div align="center">

<img src=docs/source/nnDetection.svg width="600px">

Version Python CUDA

</div>

What is nnDetection?

Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions depend on rating of objects rather than e.g. pixels. For this task, the cumbersome and iterative process of method configuration constitutes a major research bottleneck. Recently, nnU-Net has tackled this challenge for the task of image segmentation with great success. Following nnU-Net’s agenda, in this work we systematize and automate the configuration process for medical object detection. The resulting self-configuring method, nnDetection, adapts itself without any manual intervention to arbitrary medical detection problems while achieving results en par with or superior to the state-of-the-art. We demonstrate the effectiveness of nnDetection on two public benchmarks, ADAM and LUNA16, and propose 10 further public data sets for a comprehensive evaluation of medical object detection methods.

If you use nnDetection please cite our paper:

Baumgartner M., Jäger P.F., Isensee F., Maier-Hein K.H. (2021) nnDetection: A Self-configuring Method for Medical Object Detection. In: de Bruijne M. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science, vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_51

:tada: nnDetection was early accepted to the International Conference on Medical Image Computing & Computer Assisted Intervention 2021 (MICCAI21) :tada:

Installation

Docker

The easiest way to get started with nnDetection is the provided is to build a Docker Container with the provided Dockerfile.

Please install docker and nvidia-docker2 before continuing.

All projects which are based on nnDetection assume that the base image was built with the following tagging scheme nnDetection:[version]. To build a container (nnDetection Version 0.1) run the following command from the base directory:

docker build -t nndetection:0.1 --build-arg env_det_num_threads=6 --build-arg env_det_verbose=1 .

(--build-arg env_det_num_threads=6 and --build-arg env_det_verbose=1 are optional and are used to overwrite the provided default parameters)

The docker container expects data and models in its own /opt/data and /opt/models directories respectively. The directories need to be mounted via docker -v. For simplicity and speed, the ENV variables det_data and det_models can be set in the host system to point to the desired directories. To run:

docker run --gpus all -v ${det_data}:/opt/data -v ${det_models}:/opt/models -it --shm-size=24gb nndetection:0.1 /bin/bash

Warning: When running a training inside the container it is necessary to increase the shared memory (via --shm-size).

Local

To create a working environment locally with conda, please run:

conda create --name nndet_venv python=3.8
conda activate nndet_venv

Now run the following commands to properly set it up:

git clone https://github.com/MIC-DKFZ/nnDetection.git
cd nnDetection

export CXX=$CONDA_PREFIX/bin/x86_64-conda_cos6-linux-gnu-c++
export CC=$CONDA_PREFIX/bin/x86_64-conda_cos6-linux-gnu-cc

conda install gxx_linux-64==9.3.0
conda install cuda -c nvidia/label/cuda-11.3.1
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

pip install -r requirements.txt  \
  && pip install hydra-core --upgrade --pre \
  && pip install git+https://github.com/mibaumgartner/pytorch_model_summary.git
FORCE_CUDA=1 pip install -v -e .

Source

Please note that nndetection requires Python 3.8+. Please use PyTorch 1.X version for now and not 2.0

  1. Install CUDA (>10.1) and cudnn (make sure to select compatible versions!)
  2. [Optional] Depending on your GPU you might need to set TORCH_CUDA_ARCH_LIST, check compute capabilities here.
  3. Install torch (make sure to match the pytorch and CUDA versions!) (requires pytorch >1.10+) and torchvision(make sure to match the versions!).
  4. Clone nnDetection, cd [path_to_repo] and pip install -e .
  5. Set environment variables (more info can be found below):
    • det_data: [required] Path to the source directory where all the data will be located
    • det_models: [required] Path to directory where all models will be saved
    • OMP_NUM_THREADS=1 : [required] Needs to be set! Otherwise bad things will happen... Refer to batchgenerators documentation.
    • det_num_threads: [recommended] Number processes to use for augmentation (at least 6, default 12)
    • det_verbose: [optional] Can be used to deactivate progress bars (activated by default)
    • MLFLOW_TRACKING_URI: [optional] Specify the logging directory of mlflow. Refer to the mlflow documentation for more information.

Note: nnDetection was developed on Linux => Windows is not supported.

<details close> <summary>Test Installation</summary> <br> Run the following command in the terminal (!not! in pytorch root folder) to verify that the compilation of the C++/CUDA code was successfull:
python -c "import torch; import nndet._C; import nndet"

To test the whole installation please run the Toy Data set example.

</details> <details close> <summary>Maximising Training Speed</summary> <br> To get the best possible performance we recommend using CUDA 11.0+ with cuDNN 8.1.X+ and a (!)locally compiled version(!) of Pytorch 1.7+ </details>

nnDetection

<div align="center"> <img src=docs/source/nnDetectionFunctional.svg width="600px"> </div> <details close> <summary>nnDetection Module Overview</summary> <br> <div align="center"> <img src=docs/source/nnDetectionModule.svg width="600px"> </div>

nnDetection uses multiple Registries to keep track of different modules and easily switch between them via the config files.

Config Files nnDetection uses Hydra to dynamically configure and compose configurations. The configuration files are located in nndet.conf and can be overwritten to customize the behavior of the pipeline.

AUGMENTATION_REGISTRY The augmentation registry can be imported from nndet.io.augmentation and contains different augmentation configurations. Examples can be found in nndet.io.augmentation.bg_aug.

DATALOADER_REGISTRY The dataloader registry contains different dataloader classes to customize the IO of nnDetection. It can be imported from nndet.io.datamodule and examples can be found in nndet.io.datamodule.bg_loader.

PLANNER_REGISTRY New plans can be registered via the planner registry which contains classes to define and perform different architecture and preprocessing schemes. It can be imported from nndet.planning.experiment and examples can be found in nndet.planning.experiment.v001.

MODULE_REGISTRY The module registry contains the core modules of nnDetection which inherits from the Pytorch Lightning Module. It is the main module which is used for training and inference and contains all the necessary steps to build the final models. It can be imported from nndet.ptmodule and examples can be found in nndet.ptmodule.retinaunet.

</details> <details close> <summary>nnDetection Functional Details</summary> <br> <div align="center"> <img src=docs/source/nnDetectionFunctionalDetails.svg width="600px"> </div> </details>

Experiments & Data

The data sets used for our experiments are not hosted or maintained by us, please give credit to the authors of the data sets. Some of the labels were corrected in data sets which we converted and can be downloaded (links can be found in the guides). The Experiments section contains multiple guides which explain the preparation of the data sets via the provided scripts.

Toy Data set

Running nndet_example will automatically generate an example data set with 3D squares and sqaures with holes which can be used to test the installation or experiment with prototype code (it is still necessary to run the other nndet commands to process/train/predict the data set).

# create data to test installation/environment (10 train 10 test) nndet_example # create full data set for prototyping (1000 train 1000 test) nndet_example --full [--num_processes]

The full problem is very easy and the final results should be near perfect. After running the generation script follow the Planning, Training and Inference instructions below to construct the whole nnDetection pipeline.

Guides

Work in progress

Experiments

Besides the self-configuring method, nnDetection acts as a standard interface for many data sets. We provide guides to prepare all data sets from our evaluation to the correct and make it easy to reproduce our resutls. Furthermore, we provide pretrained models which can be used without investing large amounts of compute to rerun our experiments (see Section Pretrained Models).

<div align="center">

Results

nnDetection v0.1

</div> <div align="center">

Guides

<!-- --><!-- --><!-- -->
Task 003 LiverTask 011 KitsTask 020 RibFrac
Task 007 PancreasTask 012 LIDCTask 021 ProstateX
Task 008 Hepatic VesselTask 017 CADATask 025 LymphNodes
Task 010 ColonTask 019 ADAMTask 016 Luna
</div>

Adding New Data sets

nnDetection relies on a standardized input format which is very similar to nnU-Net and allows easy integration of new data sets. More details about the format can be found below.

Folders

All data sets should reside inside Task[Number]_[Name] folders inside the specified detection data folder (the path to this folder can be set via the det_data environment flag). To avoid conflicts with our provided pretrained models we recommend to use task numbers starting from 100. An overview is provided below ([Name] symbolise folders, - symbolise files, indents refer to substructures)

Warning[!]: Please avoid any . inside file names/folder names/paths since it can influence how paths/names are splitted.

${det_data} [Task000_Example] - dataset.yaml # dataset.json works too [raw_splitted] [imagesTr] - case0000_0000.nii.gz # case0000 modality 0 - case0000_0001.nii.gz # case0000 modality 1 - case0001_0000.nii.gz # case0001 modality 0 - case0000_0001.nii.gz # case0001 modality 1 [labelsTr] - case0000.nii.gz # instance segmentation case0000 - case0000.json # properties of case0000 - case0001.nii.gz # instance segmentation case0001 - case0001.json # properties of case0001 [imagesTs] # optional, same structure as imagesTr ... [labelsTs] # optional, same structure as labelsTr ... [Task001_Example1] ...

Data set Info

dataset.yaml or dataset.json provides general information about the data set: Note: [Important] Classes and modalities start with index 0!

task: Task000D3_Example name: "Example" # [Optional] dim: 3 # number of spatial dimensions of the data # Note: need to use integer value which is defined below of target class! target_class: 1 # [Optional] define class of interest for patient level evaluations test_labels: True # manually splitted test set labels: # classes of data set; need to start at 0 "0": "Square" "1": "SquareHole" modalities: # modalities of data set; need to start at 0 "0": "CT"

Image Format

nnDetection uses the same image format as nnU-Net. Each case consists of at least one 3D nifty file with a single modality and are saved in the images folders. If multiple modalities are available, each modality uses a separate file and the sequence number at the end of the name indicates the modality (these need to correspond to the numbers specified in the data set file and be consistent across the whole data set).

An example with two modalities could look like this:

- case001_0000.nii.gz # Case ID: case001; Modality: 0 - case001_0001.nii.gz # Case ID: case001; Modality: 1 - case002_0000.nii.gz # Case ID: case002; Modality: 0 - case002_0001.nii.gz # Case ID: case002; Modality: 1

If multiple modalities are available, please check beforehand if they need to be registered and perform registration befor nnDetection preprocessing. nnDetection does (!)not(!) include automatic registration of multiple modalities.

Label Format

Labels are encoded with two files per case: one nifty file which contains the instance segmentation and one json file which includes the "meta" information of each instance. The nifty file should contain all annotated instances where each instance has a unique number and are in consecutive order (e.g. 0 ALWAYS refers to background, 1 refers to the first instance, 2 refers to the second instance ...) case[XXXX].json label files need to provide the class of every instance in the segmentation. In this example the first isntance is assigned to class 0 and the second instance is assigned to class 1:

{ "instances": { "1": 0, "2": 1 } }

Each label file needs a corresponding json file to define the classes. We also wrote an Detection Annotation Guide which includes a dedicated section of the nnDetection format with additional visualizations :)

Using nnDetection

The following paragrah provides an high level overview of the functionality of nnDetection and which commands are available. A typical flow of commands would look like this:

nndet_prep -> nndet_unpack -> nndet_train -> nndet_consolidate -> nndet_predict

Eachs of this commands is explained below and more detailt information can be obtained by running nndet_[command] -h in the terminal.

Planning & Preprocessing

Before training the networks, nnDetection needs to preprocess and analyze the data. The preprocessing stage normalizes and resamples the data while the analyzed properties are used to create a plan which will be used for configuring the training. nnDetectionV0 requires a GPU with approximately the same amount of VRAM you are planning to use for training (we used a RTX2080TI; no monitor attached to it) to perform live estimation of the VRAM used by the network. Future releases aim at improving this process...

nndet_prep [tasks] [-o / --overwrites] [-np / --num_processes] [-npp / --num_processes_preprocessing] [--full_check] # Example nndet_prep 000 # Script # /scripts/preprocess.py - main()

-o option can be used to overwrite parameters for planning

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多